ОПТИМИЗАЦИЯ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ И СКОРОСТИ ОБРАБОТКИ ДАННЫХ

Умаров $\mathbf{A}.\mathbf{A}^1$. ,Тукубаев $\mathbf{3}.\mathbf{B}^2$.

(Международный Казахско-Турецкий университет имени Ясауи, г.Туркестан, Казахстан)

В статье рассматривается задачи оптимизации распределения потоков по группам пользователей и скорости обработки информации. Приведен алгоритм решения задачи с помощью ПО Excel с использованием метода динамического программирования.

Ключевые слова: организационные системы, корпоративные информационные системы, консальтинговые компании, анализ бизнес-процессов компании, информационные системы корпоративного управления.

1. Введение

Одной из приоритетных направлений, является *автоматизация* деятельности государственного аппарата, учреждений образования и культуры, ускорения реализации проекта "электронного правительства" [1,2]. Стоит подчеркнуть, что в разделе *Цели — Показатели С*тратегического плана развития вуза МКТУ им. А. Ясауи на 2009-2013 гг. [3, с. 72] определена конкретная цель — *разработка информационной системы управления вузом*.

Задача разработки и внедрения информационных систем (ИС) корпоративного управления состоит из нескольких этапов [4,5,6]. Как правило, речь идет о внедрении в вуз масштабных систем типа ERP (MRP) или прикладных систем, рассчитанных на большую организационную систему. Каждая компания — разработчик корпоративных систем имеет свой внутренний

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

стандарт внедрения таких систем для каждой конкретной компании. Значительное число консалтинговых компании специализирующих на анализе, подборе и внедрении корпоративных информационных систем имеют технологию настройки и запуска системы.

Среди основных задач при разработке ИС можно выделить [6]:

- 1) изучение и анализ бизнес-процессов компании, фиксация бизнес-процессов, реинжиниринг процессов, если необходимо [14];
- 2) определение ключевых пользователей (автоматизированных рабочих мест) [14], их функции, обучение персонала в системе конкретных функции;
- 3) определение оптимального распределения потоков и оптимальной скорости обработки для настройки конфигурации системы;
- 4) внесение необходимых изменений в конфигурацию и настройки системы на основании результатов опытной эксплуатации; определение окончательного списка пользователей системы и фиксация ролей; запуск системы в промышленную эксплуатацию.

2. Основная часть

Задача исследования потоков заявок, поступающих на веб - сервер организации, в частности на центральный сервер МКТУ им. Ясауи описана в [16,17,18]. В работе был определен пуассоновский закон поступления заявок. Результаты, полученные в последних работах дают основу для настоящей задачи.

Настоящая работа посвящается решению задачи 3 и состоит из двух подзадач:

- оптимизация распределения потоков по группам пользователей;
 - оптимизация скорости обработки данных.
- 1. Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)
- 2. Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

Эта задача на языке системного аналитика выглядит так; на основании качественного анализа характера транзакции /связей между ними, их типов и количеств/, которые обрабатываются ИС, определяются типы и параметры аппаратного обеспечения; будут определены используемые модули и основные параметры программного обеспечения, а также необходимое количество задействуемых специалистов.

Существуют стандартные методы, позволяющие оценить аппаратного обеспечения параметры лля лостижения требуемого уровня быстродействия и надежности обработки данных. Привлечение экспертов по ИС позволяет определить, какие конкретно модули какую систему и использовать. должны быть параметры базовой каковы конфигурации. Необходимо отметить, что независимо от уровня компетенции специалистов однозначного ответа на этот вопрос не существует. При этом, возможно несколько альтернативных решений. Один из возможных подходов к выбору базовой конфигурации исследования описан В [6]. Модели производительности технических систем - сети, серверов рассмотрены в [9, 11, 12, 13, 18].

В конечном итоге, когда бизнес-процессы описаны, а также определены конкретная система и ее модели, возникает задача: как распределить элементарные транзакции между К исполнителями (ключевыми пользователями и/или отдельными подразделениями). Критерием оптимальности такого распределения обычно является поток информации (нагрузка и сложность операции), приходящие на одного исполнителя (задача 1), а также минимизация общего времени обработки информации (задача 2). В дальнейшем будем использовать максимально допустимый объем информации на одного исполнителя в единицу времени (в сек.)

Постановка задачи 1.

После анализа бизнес-процессов вуза можно определить понятие сложности бизнеса. Пусть всего в бизнес-процессах встречается N операции (элементарных транзакции). На

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

основании накопленной статистики за квартал или год можно каждой операции t_j сопоставить относительную частоту ее появления v_j , которая при выборке и устойчивых условиях деятельности будет стремиться к вероятности p_j . Пример такого распределения группам пользователей (отделам) представлен на рис. 1 для практического случая внедрения в вузе.

На основании формулы для количества информации можно определить сложность и количество информации, приходящее элемантарную на ОДНУ презентацию. Коэффициент дальнейшем будем К В полагать равным 1, что соответствует выбору в качестве шкалы измерения бинарной системы. Как правило, в стандартных ИС каждой транзакции соответствует одна или несколько записей, где каждая запись включает lполей. Совокупность значении всех полей полностью определяет содержание транзакции. Предположим, что полей независимы значения И принимают $\Omega = \{w_1, w_2, ..., w_t\}$ значений. Тогда полное количество независимых $W_i = w_1 \cdot w_2 \cdot ... w_l$ состояний для транзакции равно. Соответственно ланного типа количество $I_i = k \ln W_i$ информации определяет сложность транзакции данного типа t_{i} .

Таблица 1. Статистика транзакции

Тран	Pe	Уч	Мет	На	Би	Де	Пре	Сту	Bce	В %
закции	к тор ат	от дел	од От дел	уч от дел	бл ио тек	ка нат	пода вате ли	ден ты (10	го	
					a		(10 фак)	тыс)		
ПОИСК	51	1334	409	420	21	2861	4876	4025	5088	8,75

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

студента	3				9			6	8	
по ФИО										
ПОИСК	46	1211	309	313	0	2603	4690	3230		
студента	1							2	4188	
по спец.									9	7,20
ПОИСК	38	318	285	276	0	2777	3902	3818		
студента	3							4	4612	
по группе									5	7,93
ПОИСК	52	546	2308	2211	0	2344	7954	3841		
преподав	5							5		
ателя									5430	
по ФИО									3	9,34
ПОИСК	32	493	1869	1624	0	1990	7112	3606		
препод.	0							8		
по									4947	
предмету									6	8,51
ПОИСК	36	417	1960	1883	0	2203	6612	3441		
препод.	3	-						3		
по								_	4785	
фак/каф									1	8,23
ПОИСК	10	436	389	410	37	566	1003	0		-,
номера	68		007		6	200	1000	Ü		
приказа					_				4248	0,73
ПОИСК	11	580	406	415	39	572	1022	0	.2.0	0,70
номера	03	200			0	8,2	1022	Ü		
исх/вх.	0.5									
Докумен.									4488	0,77
PACHET	50	380	311	295	25	244	0	0	1100	0,77
колич.	1	300	311	273	1	2-1-1	O	· ·		
исх/вх.	1				•					
Докумен.									1982	0,34
РАСЧЕТ	48	566	330	399	28	233	0	0	1702	0,54
колич.	6	300	330	377	3	233	U	U		
обработ.	0				3					
Докумен.										
/заверше										
нных дел									2297	0,39
РАСЧЕТ	0	365	0	0	0	1862	2066	9311	2271	0,37
колич.	0	303	0	0	0	1002	2000	9311		
студ. по										
вузу в										
разрезе										
на									1360	
									4	2,33
факульт.	0	482	0	0	0	1607	3991	1302	+	۷,٥٥
баллов	U	402	0	0	U	1007	3991	2		
GPA								2	1910	
									2	3,28
студ. по	1								7	3,20

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru) 2. Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

группе										
PACHET	0	885	0	0	0	2334	2668	0		
общей		005				2331	2000	Ů		
нагрузки										
часов по										
факульт.									5887	1,01
РАСЧЕТ	0	742	0	0	0	3457	3435	0	3667	1,01
нагрузки	0	742	0	0	U	3437	3433	U		
препод										
вуза									7634	1,31
РАСЧЕТ	0	611	0	0	0	2360	0	0	7034	1,51
общего	0	011	0	0	U	2300	U	U		
расписан										
ия										
занятий										
ПО										
факульт.									2971	0,51
РАСЧЕТ	0	437	0	0	0	2991	3633	0	27/1	0,51
расписан	0	437	0	0	U	2991	3033	U		
ия										
занятий у										
преподав.									7061	1,21
ПОИСК	0	0	336	0	0	0	2010	4081	7001	1,21
Учеб –	0	U	330	0	U	U	2010	4001		
метод.										
пособий										
ПОСООИИ										
автору									6427	1,10
РАСЧЕТ	0	0	301	0	0	0	1233	0	0427	1,10
колич.	U	U	301	U	U	0	1233	U		
опубл.										
уч. метод										
пособ										
препод.									1534	0,26
РАСЧЕТ	0	0	298	0	0	0	4077	0	1334	0,20
колич	U	U	270	U	U	U	4077	U		
опубл.										
книг										
препод.									4375	0,75
РАСЧЕТ	40	1076	0	0	0	2578	3340	3045	1313	0,75
оплаты	9	1070	"	"	"	23,3	33.10	6		
студ. за	–								3785	
год/семес									9	
тр									_	6,51
ПОИСК	0	0	0	563	88	0	0	3818		0,01
статей по	`	ľ	`		6	`	`	2010		
направле										
нию									5267	0,90
	!	1	L	L	!	L	L	L	5201	0,20

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru) 2. Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

исслед.										
РАСЧЕТ	0	0	418	0	0	0	1560	0		
колич.	U	Ü	410	Ü	U		1300			
опубл.										
статей										
препод.									1978	0,34
РАСЧЕТ	0	0	277	0	0	0	4099	0	1770	0,54
колич.	U	U	211	U	U	U	4022	U		
опубл										
книг										
препод.										
препод.									4376	0,75
ПОИСК	0	0	560	528	16	0	1260	1506	4370	0,73
книг по	U	U	300	320	84	0	5	0	3043	
-					04		3	U	7	5,23
автору ПОИСК	0	0	435	330	14	0	1307	1884	,	2,43
	U	U	433	330	79	U	4	8	3416	
книг по теме					19		4	0	6	5,87
PACHET	0	0	0	0	56	0	1306	2238	U	3,67
_	U	U	U	U		U	1300	2236		
колич.					6					
поступ									4110	0.70
книг РАСЧЕТ	0	0	0	0	62	0	0	0	4110	0,70
_	U	U	U	U	2	U	U	U		
колич.					2					
книг у									622	0,10
читателей РАСЧЕТ	0	0	0	0	47	0	0	0	022	0,10
_	U	U	U	U	0	U	U	U		
числа					U					
читателей									470	0,08
по вузу РАСЧЕТ	0	230	0	0	0	669	1692	3900	470	0,08
_	U	230	U	U	U	009	4683	6		
успеваем								0		
ости в									4458	
группе									8	766
РАСЧЕТ	0	314	0	0	0	891	5879	3828	8	7,66
_	U	314	U	U	U	091	3019	3828		
посещаем ости								٥	4536	
									7	7,80
в группе Всего по	61	1142	1120		72	3514	1068	3937		7,00
	32	3	1120	9667	26	2	30	61		
Группам	34	ا ا	1	9007	20		30	01	5813	
Общее									82	100
l	l								04	100

						,										
	№		1		2		3		4		5		6		7	
	I		1060		108	C	107	0	100	60	108	80	10	70	10	10
8		9		10)	11		12	·	13		14		15		

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

1040	980	980	1170	1680	2560	2240	2080
№	16	17	18	19	20	21	22
I	2980	2720	1080	1010	1040	1030	1020
23	24	25	26	27	28	29	30
1080	1060	1060	1020	1040	1020	1020	1280

Таким образом, транзакция каждого типа характеризует частоту появления (статистическую вероятность), количество информации $t_j = (p_j, I_j)\,, \quad j = 1...N$ и общий поток (объем)

$$I^* = \sum_{j=1}^N p_j I_j$$
 информации, которую должна обрабатывать

система управления в единицу времени. Задача баланса между I^* и M -мощностью системы управления — рассмотрена в работе / ? /.

Время на обработку одной стандартной элементарной транзакции пропорционально его сложности или количеству информации; при этом считается что информация различных сегментов определена релевантно, то есть равноценна $\tau_j = \tau_0 I_j$.

Причем коэффициент пропорциональности предполагается не зависящим от типа транзакции (что добивается настройкой ИС и рабочего места исполнителя).

Пусть определено K исполнителей (подразделений или пользователей). Обозначим через Q_k — множество операций, выполняемых k-м исполнителем; где $Q = \{Q_k\}$ — распределение операций по исполнителям. Будем называть допустимым такое разбиение, при котором удовдетворяется условие: $\sum_{j \in Q_k} p_j I_j \leq c$, которое показывает что, отдел может обработать ограниченный объем информации в единицу времени. Кроме того, учтем что некоторые транзакции априори могут быть привязаны к конкретным пользователям; т.е.:

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

 $t_{jk} \in Q_k$, k = 1,2,...K, $j_k \in \{1,...N\}$ — это правило определяется вопросами конфиденциальности информации (при этом, только конкретные пользователи авторизованы для работы с конкретными видами информации).

С учетом введенных обозначений дадим формальную постановку задачи:

Решение залачи 1

Определить такое допустимое распределение транзакции $Q = \{Q_k\}$ по исполнителям, что удовлетворяется условие $\sum_{j \in \mathcal{Q}_k} p_j I_j \leq c$ (1) и обеспечивает наиболее равномерную загрузку подразделений; т.е. минимизирует функцию $\Phi = \frac{1}{K} \sum_{k=1}^K (\frac{I^*}{K} - \sum_{i \in \mathcal{Q}_k} p_i I_i)^2 \to \min$ (2).

Данная задача относится к задаче комбинаторного программирования [5,6,7].

Алгоритм решения с помощью ПО Excel:

- 1. Нахождение объемов информации (потоков)
- 1.1. Содержание потока сообщений в месяц определяется как сумма произведения P (из табл. 1) на I (из табл.2) и приведено в таблиие 3:

Таблица 3. Объем информации (поток) за 1 месяц.

N	Рек	Уч от	Me	Ha	Биб	Де	Пре	Сту
•	To	дел	тод	уч от	лио	ка	пода	Ден
	-	дел		-				, ,
	рат		От	дел	тека	нат	ват	ТЫ
			дел				(10	(10
							фак)	тыс)
1		141404			2321	303266	516856	426713
	543780	0	433540	445200	40	0	0	60
2		130788				281124	506520	348861
	497880	0	333720	338040	0	0	0	60
						297139	417514	408568
3	409810	340260	304950	295320	0	0	0	80
4			244648	234366		248464	843124	407199
	556500	578760	0	0	0	0	0	00
5	345600	532440	201852	175392	0	214920	768096	389534

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

			0	0		0	0	40
			209720	201481		235721	707484	368219
6	388410	446190	0	0	0	0	0	10
7	107868	440260	202000	41.4100	3797	571660	101303	
	11471	440360	392890	414100	60	571660	10628	0
		60320	4222	43160	405	59488		
8	20	0	40	0	600	0	80	0
	49098	37240	3047	28910	245	23912		
9	0	0	80	0	980	0	0	0
	47628	55468	3234	39102	277	22834		
10	0	0	00	0	340	0	0	0
		42705				21785	24172	10893
11	0	0	0	0	0	40	20	870
1	1	80976				26997	67048	21876
2	0	0	0	0	0	60	80	960
	1	22656				59750	68300	
3	0	00	0	0	0	40	80	0
		16620				77436	76944	
14	0	80	0	0	0	80	00	0
	1	12708				4908	ı	
4	0	80	0	0	0	800	0	0
	1					891		
ć	a a	13022				318	10826	
	0	60	0	0	0	0	340	0
	1		91392		Ť	1	54672	11100
-	0	0	0	0	0	0	00	320
	1		32508			1	13316	
8	0	0	0	0	0	0	40	0
	1		30098			Ť	41177	
ģ	0	0	0	0	0	0	70	0
	1 7	0	0	0		268	70	0
	42536	11190				112	34736	31674
'	0	40	0	0	0	0	00	240
	_	+0	U	57989	9125	10	00	39325
1	0	0	0	0	80	0	0	40
1 .	II U	U		U	00	U		40
			12626				1 15012	
2		0	42636	0	0		15912	
2		0	42636 0 29916	0	0	0	15912 00 44269	0

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru) 2. Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

3			0				20	
2			59360	55968	1785		13361	15963
4	0	0	0	0	040	0	300	600
2			46110	34980	1567		13858	19978
5	0	0	0	0	740	0	440	880
2					5773		13321	22827
6	0	0	0	0	20	0	20	60
					6468			
27	0	0	0	0	80	0	0	0
2					4794			
8	0	0	0	0	00	0	0	0
2		23460				682	47766	39786
9	0	0	0	0	0	380	60	120
3						114		
C		40192				048	75251	49002
	0	0	0	0	0	0	20	240
Всег								
o	636040	160834	123979	102061	75097	5436	135406	441401
в гр.	0	00	20	40	80	3320	740,00	180
Общ			·					683728
ee								880

Постановка задачи 2.

Еще одним критерием распределения операции по рабочим местам является обеспечение требуемой скорости обработки информации с учетом функциональных или технологических связей между операциями. Если в каждой группе Q_k транзакции, относящиеся к одному и тому же бизнес-процессу будут обрабатываться не дольше чем ? с., то общее время на обработку будет cK и вся система будет работать в сбалансированном режиме. Пусть время на обработку одной транзакции будет - t_i , а затраты на сокращение этой длительности на величину τ_i составляет $\varphi_i(\tau_i)$. Тогда задача состоит в отыскании такого разбиения транзакции по группам и

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

величин τ_i , которое обеспечивало бы требуемый такт c с минимальными затратами.

Как описано в [3,4] все транзакции относятся к тем или иным БП, которые в свою очередь можно представить в виде графа, вершины которого соответствуют операциям, а дуги - последоавательности выполнения. Другими словами, приступить к обработке очередной транзакции после того, как завершена предшествующая. Как и раньше, будем обозначать через $Q = \{Q_k\}$ - распределение транзакции по группам , удовлетворящим требуемой последовательности операции.

Решение задачи 2

Определить допустимое распределение транзакции по группам $Q = \{Q_k\}$ и величины τ_i , сокращения продолжительности операции минимизирующее $\sum_{i=1}^N \varphi_i(\tau_i) \to \min$ при ограничениях $0 \le \tau_i \le t_i$ $i = 1, \dots N$ $\sum_{i \in Q_k} (t_i - \tau_i) \le c$ $k = 1, \dots K$

Эта задача о балансе линий конвейера была решена в [3,4]. Воспользуемся ее результатом.

На первом этапе решения задачи произведем декомпозицию графа. Разобьем множество вершин X графа на две непересекающие подмножетства X_1 и X_2 таким образом, что не существует дуг, идущих из вершин множества X_2 в вершины множества X_1 . Примем что операция $i \in X_1$ выполняется в первых k группах, а операции множества X_2 – в последующих группах. Оценим затраты на обеспечение требуемого такта обработки информации при таком разбиении.

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

Для этого решим две задачи типа: $\sum_{i=Y} \varphi_i(\tau_i) \to \min$ при ограничениях $0 \le \tau_i \le t_i$ i=1,...N $i \in Y$ $\sum_{i \in O} (t_i - \tau_i) \le qc$.

В первой задаче $Y=X_1, q=k$; а во второй $Y=X_2, q=K-k$. Обозначим $\Phi(Y,q)$ -значение в оптимальном решении задачи. Задача при выпуклых функциях $\phi_i(\tau_i)$ является задачей выпуклого программирования и может быть решена стандартными методами.

Величина $\Phi(X_1,k) + \Phi(X_2,K-k)$ при является оценкой снизу минимальных затрат на сокращение такта до величины c.

На втором этапе решения применим процедуру ветвей и границ с локальной оптимизацией. Пусть (X_1,X_2) – некоторое начальное разбиение. Выделим множество $Q(X_1) \in X_1$, не имеющих исходящих дуг в вершины множества X_1 и множество вершин $Q(X_2) \in X_2$ не имеющих заходящих дуг из вершин множества X_2 . Очевидно, что любое разбиение вида $(X_1 \bigcup i, X_2 \setminus i)$ допустимо. Содержательно это соответствует допустимому перемещению одной из операции выполняемых на последних К рабочих местах на первые K рабочие мест или наоборот.

Таким образом, из исходного разбиения (X_1,X_2) можно получить $|Q(X_1)|+|Q(X_2)|$ соседних разбиений. Процедура локальной оптимизации заключается в оценке величин каждого разбиения имеющего минимальную величину оценки. Разбиение (X_1,X_2) называется локально-оптимальным разбиением $(X_1^*,X_2^*),\;k^*\!\!\left(\!X_1^*\!\right),\;$ если все соседние с ним имеют не меньшую величину оценки.

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru) 13 2. Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

Далее, задача рассматривается отдельно для операции множества X_1^* выполняемых на первых $k^* \big(X_1^* \big)$ рабочих местах и отдельно для операции X_2^* выполняемых на последних $K - k^* \big(X_1^* \big)$ рабочих местах. Алгоритм заканчивается, когда определены множества операции выполняемых на каждом рабочем месте. И допустимая очередность их выполнения на каждом рабочем месте. Дальнейшее улучшение полученного решения можно получить, применяя метод динамического программирования при фиксированной последовательности выполнения операции.

Литература

- 1. Концепция стратегического развития Республики Казахстан «Казахстан 2030»// г. Астана. 1998.
- 2. Стратегический план развития Международного казахско- турецкого Университтета им. А. Ясави на 2009-2013 г. г.// г.Туркестан, 2010.
- 3. НОВИКОВ Д. А., ЦВЕТКОВ А. В., ГЛАМАЗДИН Е. С. Управление корпоративными программами: информационные системы и математическое модели// -М.: Компания Спутник, 2003.-159с.
- 4. Технологии и системы информационного корпоративного управления. 2002. -200 с.
- 5. ТУКУБАЕВ З. Б., УМАРОВ А. А. *Исследование потоков заявок, поступающих на веб-сервер организации* // Сб. науных трудов "Вестник МКТУ",№3,с.42-45, г.Туркестан, 2009
- 6. УМАРОВ А. А., И ДР. *Разработка веб-узла фирмы* "*АББА* // V Всероссийская школа-семинар молодых ученых "Управление большими системами". Сб. трудов.-Т.2 Липецк, 2008.

^{1.} Амантур Амангелдыевич Умаров, магистр(Unix77@yandex.ru)

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)

7. ТУКУБАЕВ 3. Б., УМАРОВ А. А. Моделирование и исследование алгоритмов динамического управления потоками сообщений в информационно-вычислительных сетях //. Х-я международная научно-техническая конференция «Кибернетика и высокие технологии XXI века». Воронеж. 2009

OPTIMIZATION OF DISTRIBUTION OF RESOURCES AND SPEED OF DATA PROCESSING

Amantur Amangekdievich Umarov, on the example international kazahsko-turkish university of A. Yasawi, Turkestan, Kazakhstan (Unix77@yandex.ru).

Zukirkhan Beisekovich Tukubayev, on the example international kazahsko-turkish university of A. Yasawi, Turkestan, Kazakhstan (zuhr@pochta.ru).

Abstract: In article it is considered problems of optimisation of distribution of streams on groups of users and speed of processing of the information. The algorithm of the decision of a problem with the help on Excel with use of a method of dynamic programming is resulted.

Keywords: Organizational systems, corporate information systems, the consulting companies, the analysis of business processes of the company, information systems of a corporate governance.

^{2.} Зухирхан Бейсекович Тукубаев, кандидат технических наук (zuhr@pochta.ru)