ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ВЕБ-СЕРВЕРА ОРГАНИЗАЦИИ ПРИ ПОМОЩИ СИСТЕМЫ GPSS

Умаров A.A 1 . ,Тукубаев 3.Б 2 .

(Международный Казахско-Турецкий университет имени Ясауи, г.Туркестан, Казахстан)

В данной работе разработана имитационная модель работы веб-узла организации. Была использована специализированная система моделирования СМО GPSS.

Ключевые слова: имитационная модель работы веб-узла организации, вероятность отказов, среднее время обслуживания, выбор оптимальной стратегии СМО, среднее время обслуживания одной заявки.

современных цифровых В сетях интегрального обслуживания в условиях перегрузки сети (в час пик) качестов обслуживания заметно ухудшается; увеличивается вероятность отказов и среднее время обслуживания [1-3]. В таких случаях целесообразно управлять организацией сервера узла связи; выбирать кластерную оптимально структуру сервера, рассчитыая на макимальный трафик [2,4,5]. При этом, процесс оптимизации сервера основывается на модели входящего потока вызовов (заявок).

Поэтому разработка методов автоматизированной обработки входных потоков данных и построения модели сервера обработки является актуальной.

В работах автора [5,6,7,10] построены обощенные модели систем массового обслуживания (СМО), которые дают возможность выбора оптимальной стратегии СМО путем определения их параметров; эти модели можно использовать при оптимизации и управлении СМО.

В настоящей статье для построения модели входящего потока вызовов в центральном сервере МКТУ им. Ясауи [9].

Были получены аналогичные данные и в веб-сервере компьютерной фирмы [10].

Одним из важных показателей узла является степень загрузки сервера (*нагруженность*).

Математический аппарат, широко используемый для моделирования работы технических устройств (в том числе серверов) - теория массового обслуживания (ТМО). ТМО представляет собой прикладную математическую дисциплину, занимающая исследованием показателей производительности технических устройств или систем массового обслуживания (СМО), предназначенных для обработки поступающих заявок.

В данной статье предлагается метод разработки математической модели (имитационной модели) веб узла в виде СМО. Веб узел рассматривается как СМО, которая выполняет обработку поступающих заявок (запросов пользователей).

Язык GPSS (General Purpose Simulation System) используется для исследования процедур имитационного моделирования сложных технических объектов, представленных как системы массового обслуживания.

В математических моделях (ММ) сложных объектов, представленных в виде систем массового обслуживания (СМО), фигурируют средства обслуживания, называемые *обслуживающими аппаратами* (ОА), и обслуживаемые заявки, называемые *транзактами*. Так, в модели производственной линии ОА отображают рабочие места, а транзакты - поступающие на обработку детали, материалы, инструмент.

Состояние СМО характеризуется состояниями ОА, транзактов и очередей к ОА. Состояние ОА описывается двоичной переменной, которая может принимать значения "занят" или "свободен". Переменная, характеризующая состояние транзакта, может иметь значения "обслуживания" или "ожидания". Состояние очереди характеризуется количеством находящихся в ней транзактов.

Имитационная модель СМО представляет собой алгоритм, отражающий поведение СМО, т.е. отражающий изменения состояния СМО во времени при заданных потоках заявок, посту-

пающих на входы системы. Параметры входных потоков заявок - внешние параметры СМО. Выходными параметрами являются величины, характеризующие свойства системы - качество ее функционирования. Примеры выходных параметров: произво**дительность** СМО - среднее число заявок, обслуживаемых в единицу времени; коэффициенты загрузки оборудования - отношение времен обслуживания к общему времени в каждом ОА; среднее время обслуживания одной заявки. Основное свойство ОА, учитываемое в модели СМО, - это затраты времени на обслуживание, поэтому внутренними параметрами в модели СМО являются величины, характеризующие это свойство ОА. Обычно время обслуживания рассматривается как случайная величина и в качестве внутренних параметров фигурируют распределения этой величины. параметры законов

Имитационное моделирование позволяет исследовать СМО при различных типах входных потоков и интенсивностях поступления заявок на входы, при вариациях параметров ОА, при различных дисциплинах обслуживания заявок. Дисциплина обслуживания - правило, по которому заявки поступают из очередей на обслуживание. Величина, характеризующее право на первоочередное обслуживание, называется приоритетом. В моделях СМО заявки, приходящие на вход занятого ОА, образуют очереди, отдельные для заявок каждого приоритета. При освобождении ОА на обслуживание принимается заявка из непустой очереди с наиболее высоким приоритетом.

Основной тип ОА - устройства, именно в них происходит обработка транзактов с затратами времени. К ОА относятся также *накопители* (*памяти*), отображающие средства хранения обрабатываемых деталей в производствееных линиях или обрабатываемых данных в вычислительных системах. Накопители характеризуются не временами обслуживания заявок, а емкостью - максимально возможным количеством одновременно находящихся в накопителе заявок.

К элементам имитационных моделей СМО кроме ОА относят также *узлы* и *источники заявок*. Связи ОА между собой реализуют *узлы*, т.е. характерезуют правила, по которым заявки направляются к тому или иному ОА. Для описания моделей СМО при их исследовании на ЭВМ

разработаны специальные языки имитационного моделирования. Существуют *общецелевые языки*, ориентированные на описание широкого класса СМО в различных предметных областях, и *специализированные языки*, предназначенные для анализа систем определенного типа. Примером общецелевых языков служит широко распространенный язык GPSS, примером специализированного языка - язык МПЛ/ВС моделирования вычислительных

I. Постановка задачи.

Процессор веб сервера состоит из 2 основных и одного дополнительного канала (сопроцессора). Заявки поступают с интервалом 8±3 сек [10]. Допустимое количество заявок в системе 4, включая обработку сопроцессора.

Время обработки сопроцессора занимает 9 ± 4 сек. Время обработки основного канала - 15 ± 10 сек.; 20% заявок, полностью не обработанных на основном канале, возвращаются для повторной обработки сопроцессором и остаются при этом в системе.

Если при входе заявки в системе есть 4 заявок, то она ждет не более 15 ± 2 сек. в очереди и, если нет возможности обработки в течение этого времени, то она уходит на отказ.

Смоделировать работу веб сервера в течение 48 часов (2880 мин).

Определить:

- загрузку всех каналов веб сервера,
- максимальную длину очереди в систему,
- среднее время ожидания в очереди в систему,
- распределение общего времени обработки заявки в системе,
- количество отказанных заявок.

II. Решение задачи.

Схема решения в терминах предметной области.

При поступлении очередной заявки сервер проверяет, есть ли очередь в системе. Если таковой нет, то он ищет в последнем

свободное место, а если очередь есть, то становит заявку в ее конец. Затем, либо входит в основной канал, либо создает очередь, состоящую из одной заявки (ей самой). После этого заявка ожидает в течение 15±2 сек. Если за это время место в канале обслуживания не освобождается, заявка будет отказана, в противном же случае, она покидает в очередь или повторно будет обслужена в системе.

Обработка заявки в системе происходит следующим образом. Сервер постоянно контролирует и определяет (в зависимости от состояния), каким каналом будет будет обслуживаться заявка. После полной обработки заявки сразу же покидают систему, а необработанные становятся в очередь для повторной обработки (20%), теперь уже точно на основном или дополнительном канале.

Схема решения в терминах GPSS. Переменные и параметры.

В качестве заявок в рамках данной модели будут рассматриваться транзакты.

- VB1 значение максимально возможного времени ожидания заявки в очереди; вычисляется для каждого транзакта в отдельности.
 - Х1 счетчик системного времени в сек.
- P1 параметр транзакта, определяющий его время вхождения в очередь.
- P2 параметр, изображающий характеристику "нетерпеливости" заявки как максимальное время пребывания транзакта в очереди.
- P3 время пребывания заявки в очереди: меняется в процессе движения транзакта внутри очереди.
 - X2 используется для промежуточных вычислений.
 - Х3 количество транзактов, пребывающих в очереди.

Устройства, очереди и накопители.

OZD – очередь в систему.

SYS – накопитель емкостью в четыре транзакта, изображающий систему.

CHANNEL – накопитель емкостью в два транзакта, изображающий два основных канала.

DOPOL – дополнительный канал, сопроцессор.

MWT – таблица распределения общего времени обработки заявки в системе.

Результаты.

Получены следующие результаты:

- 1. Загрузка основных каналов 96,5%
- 2. Загрузка дополнительного канала (сопроцессора) 55,2%
 - 3. Максимальная длина очереди 4 заявок.
 - 4. Среднее время ожидания в очереди 9,02 сек.
 - 5. Количество отказанных заявок 78
- 6. Распределение общего времени обработки заявок в системе приведено в табл. 1.

Таблица 1.

Интервалы времени	Число заявок	Суммарная вероятность
0 – 15	36	12.59
15 – 30	106	49,65
<i>30 – 45</i>	78	76,92
45 – 60	15	82,72
60 – 75	23	90,21
75 – 90	16	95,80
90 – 105	7	98,25
105 – 120	3	99,30
120 - 135	2	100,00

III. Исследование адекватности модели.

Метод исследования.

Рассмотренный далее метод не претендует на абсолютную точность, но, тем не менее, позволяет примерно оценить соответствие модели реальной ситуации.

Метод заключается в использовании внесения изменений в начальные данные. При этом анализируются изменения получаемых результатов.

Применение метода к поставленной задаче.

Вся информация по измененным входным данным и полученным результатам представлена в табл. 2 Знаком "|" отделяются значения для исходной задачи от значений для задачи, получаемой в результате внесения изменений.

Таблица 2.

Параметр	Загрузка	Загрузка	Макси-	Сред-	Число
	основных	дополните	маль-	нее	отказан
	каналов,	льного	ная	время	ных
	%	канала, %	длина	-ижо	заявок
			оче-	дания,	
			реди,	сек.	
			число		
			заявок		
Время рабо-					
ты системы					
48 100	96,5 97,4	55,2 53,7	4 4	9,02	78 152
часов				8,81	
Число					
основных	96,5 99,6	55,2 29,7	4 4	9,02	78 203
каналов				11,87	
2 1					
шт.					
Число заявок					
в системе	96,5 74,0	55,2 41,2	4 4	9,02	78 116
4 2				9,83	
Интервал					
между при-					
ходами	96,5 99,3	55,2 56,2	4 19	9,02	78 2545
заявок				15,10	
8±3 1					
Число					

заявок, использующ их все	96,5 95,8	55,2 66,6	4 4	9,02 8,30	78 56
каналы 33 50 %					

Приведенные в статье результаты показывают, что полученная модель с достаточной точностью отображает реальную ситуацию в рамках поставленной задачи.

Приведенную модель можно использовать для исследования потоков вызовов в узлы связи, сервера и порталы.

Литература

- 1. БРОЙДО В. Л. *Вычислительные системы, сети и телекоммуникации*//2- изд. М.,СПб.,Н.Новгород-Воронеж. 2004.703 с.
- 2. КУЛЬГИН М. *Компьютерные сети*// Практика построения для профессионалов. 2-изд.М., С.Пб., 2003-462 с.
- 3. ЛИФШИЦ А. Л., МАЛЬЦ Э. А. *Статистическое* моделирование систем массового обслуживания//-М.: Сов. Радио, 1978, 248 с.
- 4. РЕНДАЛЛ Н. *Кластеризация серверов*// РС Magazine №2. 1998.
- 5. ТУКУБАЕВ З. Б. и др. *Моделирование и исследование* алгоритмов распределения нестационарных приоритетных потоков в сети СМО// Сб."Алгоритмы"ИК с ВЦ АН РУ,г.Ташкент, Вып. 60,1986.
- 6. ТУКУБАЕВ З. Б. и др. *Модель* эффективной загрузки узлов *сети*. Тезисы докладов XI Всесоюзного совещания по проблемам управления.г.Ташкент 1989.
- 7. ТУКУБАЕВ 3. Б. Обощенные модели в системах массового обслуживания. Вестник МКТУ. №2. 2006.
- 8. ТУКУБАЕВ З. Б., ТУКУБАЕВ Б. З., УМАРОВ А. А. Моделирование и исследование алгоритмов диспетчеризации потоков и очередей сообщений в компьютерных сетях. "Вести вузов Черноземья", г.Липецк, №2(12), 2008

- 9. ТУКУБАЕВ З. Б., УМАРОВ А.А. *Исследование потоков заявок, поступающих на веб сервер организации,* Вестник МКТУ, №2, г.Туркестан, 2009
- 10. УМАРОВ А. А. *Разработка веб узла фирмы "АББА"*. V Всероссийская школа-семинар молодых ученых "Управление большими системами": Сб. Трудов. Т.2.
- 11. г. Липецк, ЛГТУ, 2008. С.151-157.

Приложение №1 Тект программы

GPSS/PC Report file REPORT.GPS. (V 2, # 37349) 05-19-2009 21:15:53 page 1

START_TIME END_TIME BLOCKS FACILITIES STORAGES FREE_MEMORY

0 2880 34 1 2 353648

NAME	VALUE TYPE
COLUMN	10001 2
POSITION	10002 2
SHAPE	10003 2
ROW	10004 2
TO_COLUMN	10005 2
TO_ROW	10006 2
COLOR	10007 2
VB1	10008 2
ENR	19 3
OZD	10010 2
ENO	6 3
ADC	8 3
CCL	10013 2
DPT	15 3
EN1	20 3
CP1	26 3
UP1	23 3
UPD	10018 2
COM	10019 2
LVE	30 3
MWT	10021 2
TRM	35 3

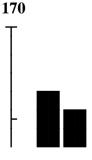
LINE	LOC	BLOCK	_TYPE	ENT	RY_COUNT
CURRENT_	COUNT	RETRY			
20	1	GENERATE	369	0	0
40	2	ASSIGN	369	0	0
50	3	ASSIGN	369	0	0
60	4	ASSIGN	369	0	0
70	5	TEST	369	0	0
80	ENO	QUEUE	264	0	0
90	7	SAVEVALUE	264	(0 0
100	ADC	ADVANCE	2383		1 0
110	9	GATE	2382	0	0
120	10	SAVEVALUE	2197		0 0
130	11	SAVEVALUE	2197		0 0
140	12	ASSIGN	2197	0	0
150	13	TEST	2197	0	0
160	14	TRANSFER	2119		0 0
170	DPT	SAVEVALUI	E 263		0 0
180	16	DEPART	263	0	0
190	17	TEST	263	0	0
200	18	TERMINATE	78	(0 0
210	ENR	GATE	218	0	0
220	EN1	ENTER	290	0	0
230	21	MARK	290	0	0

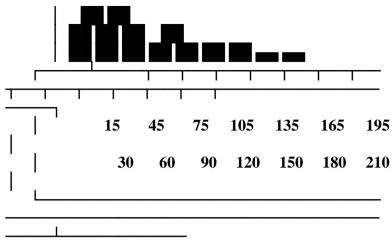
GPSS/PC Report file REPORT.GPS. (V 2, # 37349) 05-19-2009 21:15:53 page 2

LINE	LOC	BLOCK	K_TYPE	ENTR	Y_COUN	VΤ
CURRENT	_COUNT	RETRY				
240	22	TRANSFER	290	1	0	
250	UP1	SEIZE	178	0	0	
260	24	ADVANCE	178	0	0	
270	25	RELEASE	178	1	0	
280	CP1	ENTER	368	0	0	
290	27	ADVANCE	368	2	0	
300	28	LEAVE	366	0	0	
310	29	TRANSFER	366	0	0	

320	LVE	LEAVE	286	0	0
330	31	TABULATE	286	0	0
340	32	TERMINATE	286	0	0
350	33	GENERATE	2880	0	0
360	34	SAVEVALUE	2880	0	0
370	TRM	TERMINATE	2880	0	0

FACILITY ENTRIES UTIL. AVE._TIME AVAILABLE OWNER PEND INTER RETRY DELAY UPD 178 0.552 8.94 1 0 0 0 0 0

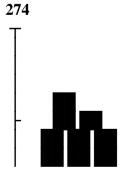

QUEUE MAX CONT. ENTRIES ENTRIES(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OZD 4 1 264 0 0.83 9.02 9.02 0

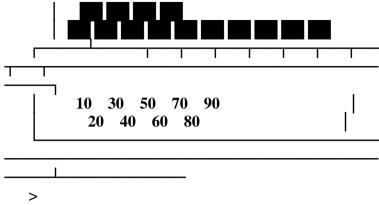

XACT_GROUP GROUP_SIZE RETRY POSITION 0 0

Приложение №1 Графики

MWT

Mean: 37.17 S.D.: 23.99

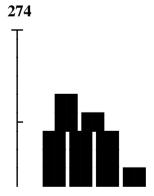



CONTINUE STEP Simulation Complete

-TABLES-

MWT

Mean: 37.04 S.D.: 23.63




CONTINUE STEP Simulation Complete

-TABLES-

MWT

Mean: 37.04 S.D.: 23.63

CONTINUE STEP Simulation Complete

ARTICLE TITLE (АНГЛИЙСКИЙ ПЕРЕВОД НАЗВАНИЯ СТАТЬИ)

Amantur Amangekdyevich Umarov, on the example international kazahsko-turkish university of A. Yasawi, Turkestan, Kazakhstan (Unix77@yandex.ru).

Zukirkhan Beisekovich Tukubayev, on the example international kazahsko-turkish university of A. Yasawi, Turkestan, Kazakhstan (zuhr@pochta.ru).

Abstract: Перевод на английский язык аннотации статьи

Keywords: перевод на английский язык ключевых слов.