ИССЛЕДОВАНИЕ ОПТИМАЛЬНЫХ ПО СТЕПЕНИ УСТОЙЧИВОСТИ РЕШЕНИЙ ПРИ ПИД УПРАВЛЕНИИ. ЧАСТЬ 1

А. М. Шубладзе

(Институт проблем управления им. В.А. Трапезникова РАН, г. Москва) shub@ipu.rssi.ru

В. Е. Попадько, , А. А. Якушева

(Российский государственный университет нефти и газа им. И.М. Губкина, г. Москва) yakusheva a@mail.ru

С. И. Кузнецов (ОАО НИИТЕПЛОПРИБОР, г. Москва)

В работе рассматривается синтез систем управления по критерию максимальной степени устойчивости для ПИД – закона управления. Проводится исследование основных оптимальных по степени устойчивости решений, что позволило наметить дальнейший путь развития метода машинным способом.

Ключевые слова: синтез систем максимальной степени устойчивости, исследование оптимальных по степени устойчивости решений.

Введение

Работа продолжает ряд публикаций [1-7] по синтезу систем максимальной степени устойчивости. В [1] предлагался способ синтеза указанных систем, который применим только для определенного, достаточно узкого класса объектов управления. В [2-5] рассмотрена возможность синтеза систем максимальной степени устойчивости на основе метода D-разбиений, который позволяет определить значение максимальной степени устойчи-

1

вости и соответствующие ей настроечные параметры ПИД регулятора. Однако этот метод не дает возможности находить значения крайних правых корней оптимального характеристического полинома замкнутой системы, определяющих значение максимальной степени устойчивости. В [6,7] для объектов произвольного вида решались задачи по синтезу систем максимальной степени устойчивости, где были получены достаточные условия оптимальности, сводящиеся к решению систем нелинейных алгебраических уравнений. И если для объектов низких порядков (до 6-го порядка включительно) эти уравнения еще можно решать, то для высоких порядков объекта управления нахождение оптимальных решений связано со значительными вычислительными трудностями. Поэтому в работе [8] для практически важного случая ПИ управления было проведено исследование оптимальных по степени устойчивости решений, которое наглядно продемонстрировало специфику оптимальных решений и позволило наметить путь машинного способа их нахождения.

В настоящей работе будет проведено исследование 4 из возможных 9 оптимальных по степени устойчивости решений для ПИД закона управления, представляющих практический интерес у широкого круга разработчиков систем управления технологическими процессами. Оставшиеся 5 решений предполагается исследовать в следующей статье.

При решении указанных задач считается, что связь между выходным сигналом объекта и сигналом управления задается дифференциальным уравнением

(1)
$$x^{(n)}(t) + \sum_{i=1}^{n} a_i x^{(i-1)}(t) = k_0 u(t),$$

где, $x^{(i)}(t)(I = 0, ..., n), n \ge 3$ - фазовые координаты, a_i и k_0 - параметры, $u(t) - \Pi U Д$ управление

(2)
$$u(t) = u_{\Pi H}(t) = k_{\Pi} \varepsilon(t) + k_{H} \int_{0}^{t} \varepsilon(\tau) d\tau + k_{A} \mathscr{K}(t),$$

2

(3) $\varepsilon(t) = g(t) - x(t), g(t)$ – задающее воздействие.

Оптимизируемыми являются параметры k_{Π} , k_{U} и k_{Z} . Указанные параметры выбираются так, чтобы выполнялось условие максимальной степени устойчивости [6]

(4)
$$I_{\text{orr}} = -\min \max \operatorname{Re} \lambda_j(k_{\Pi}, k_{H}, k_{\overline{A}}),$$

где λ_i - корни характеристического полинома

(5)
$$D_{n+1}(\lambda) = \lambda^{n+1} + \sum_{i=1}^{n} a_i \lambda^i + k_0 (k_{\Pi} \lambda + k_{\Pi} + \lambda^2 k_{\Pi})$$

В (5) после замены λ на λ_1 - I_{on} при $k_{\Pi} = k_{\Pi on}$, $k_{\Pi} = k_{Hon}$ и $k_{\Pi} = k_{\Pi on}$ характеристический полином при выполнении (4) на основании [6] принимает вид (6)

$$D_{1(n+1)}(\lambda_{1}, k_{\Pi on}, k_{H on}, k_{A on}) = \lambda_{1}^{n_{q}} \prod_{i=1}^{n_{k_{1}}} (\lambda_{1}^{2} + \omega_{i}^{2})^{\gamma_{i}} D_{1[(n+1-n_{q}-2n_{k}]}(\lambda_{1}) =$$
$$= \lambda_{1}^{n+1} + \sum_{i=3}^{n} a_{i}^{*} \lambda_{1}^{i-1} + \sum_{i=1}^{2} a_{i}^{*} (k_{\Pi on}, k_{H on}, k_{A on}) \lambda_{1}^{i-1},$$

где

(7)
$$a_{i}^{*} = \frac{1}{(i-1)!} \frac{\partial^{i-1}D_{(n+1)}(\lambda, k_{\Pi on}, k_{Hon}, k_{\Pi on})}{\partial \lambda^{i-1}},$$

i-ая производная $D_{n+1}(\lambda)$ (5) при $\lambda = -I_{\text{оп}}, D_{1[n+1-n_g-2n_k]}(\lambda_1)$ - поли-

ном, не имеющий корней в правой полуплоскости, n_g и n_k - кратности нулевого корня и комплексно-сопряженных пар корней оптимального решения, расположенных на мнимой оси. Число пар комплексно-сопряженных корней определяется равенством

(8)
$$n_k = \sum_{i=1}^{n_{k1}} \gamma_i$$

Рассматриваемая задача исследования решается на основе результатов, полученных в [6,7], и их геометрический смысл поясняется с помощью машинных методов оценивания устойчивости систем управления. При этом используется модифицированный годограф Михайлова вида

(9) $Z_{n0}(i\omega) = \operatorname{Re} D_{1(n+1)}(i\omega) + i\omega^{-1} \operatorname{Im} D_{1(n+1)}(i\omega) = \operatorname{Re}_{0}(\omega^{2}) + i \operatorname{Im}_{0}(\omega^{2})$

Как следует из работ [6,7], при ПИД управлении в системе (1), (2) может иметь место одно из пяти оптимальных решений, при которых крайними правыми корнями характеристического полинома (5) может быть от четырех до шести корней. Исследуем каждое из них.

1. Случай действительных корней оптимального решения

В этом случае имеют место условия

(10) $n_g = 4, n_k = 0,$

при которых крайним правым корнем (5), (6) является один действительный корень кратности 3. Согласно [4] условие (10) может быть только при

(11) $a_i^*(I_{\text{on}}, k_{\text{Hon}}, k_{\text{Hon}}, k_{\text{Jon}})=0, \Delta_j(0)(I_{\text{on}}, k_{\text{Hon}}, k_{\text{Jon}})>0, (1 < j < n-3),$

где, a_i^* - из (7), i = 1; 2; 3; 4, $\Delta_j(0)(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$ - определители Гурвица полинома (6). При выполнении (11) достаточность условия оптимальности следует из того, что значение крайнего правого корня полинома $D_{1(n+1)}$ (6) равно значению крайнего правого корня его второй производной, т.е. $\max \text{Re}\lambda_{1i}(k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = \max \text{Re}\lambda_{1i,3}, i = 1, ..., n$, где λ_{1i} - корни $D_{1n}(\lambda_1, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = 0$, а $\lambda_{1i,3}$ - корни третьей производной полинома (6)

(12)
$$\frac{\partial^3 D_{1(n+1)}(\lambda_1, k_{\Pi on}, k_{Hon}, k_{\Lambda on})}{\partial \lambda_1^3} = 0$$

Любой отличающийся от (11) выбор $k_{\text{Поп}}$, $k_{\text{Иоп}}$, $k_{\text{Доп}}$ (2) приводит к уменьшению степени устойчивости $I_{\text{оп}}$ (4), так как при этом в полиноме $D_{1(n+1)}$ (6) a_4^* ($I_{\text{оп}}$) = 0, a_i^* (I, k_{Π} , k_{μ} , k_{Λ}) \neq 0 хотя бы для одного a_i^* (i = 1; 2; 3), что и нарушает необходимое условие устойчивости полинома $D_{1(n+1)}$ (6).

Как следует из (6) и (11), минимальная степень при ω в $\text{Re}_0(\omega^2)$ и в $\text{Im}_0(\omega^2)$ (9) равна четырем, поэтому годограф (9), изображенный на рис. 1, в рассматриваемом случае имеет вид

Рис. 1 Годограф оптимальной системы

Годограф рис. 1 получен для полинома (6), в котором $D_{I[n+I-n_g-2n_k]}(\lambda_1) = D_{I/20I}(\lambda_I) = (\lambda_1+1)^{20}, n = 23, n_g = 4, n_k = 0.$

Из годографа рис. 1 следует, что любое изменение $k_{\Pi on}$, $k_{И on}$ или $k_{Д on}$ приводит к появлению корней полинома (6) в правой полуплоскости, т.е. к уменьшению степени устойчивости *I* системы (1), (2). Таким образом, вычисленные по формулам (7) и (11) $k_{\Pi on}$, $k_{И on}$ или $k_{Д on}$ гарантируют в рассматриваемом случае максимальную степень устойчивости системы (1), (2).

2. Случай трех действительных корней и одной комплексно-сопряженной пары корней.

В этом случае имеют место условия

(13)
$$n_g=3, n_k=1, \gamma_1=1,$$

при которых крайними правыми корнями (5), (6) являются один действительный корень кратности 3 и одна комплексносопряженная пара корней. Согласно [6] условие (10) может быть только при

(14) $a_i^*(I_{\text{on}}, k_{\text{Hon}}, k_{\text{Hon}}, k_{\text{Дon}}) = 0, \Delta^{(0)}_{n-3}(I_{\text{on}}, k_{\text{Hon}}, k_{\text{Hon}}, k_{\text{Дon}}) = 0,$ $\Delta^{(0)}_{j}(I_{\text{on}}, k_{\text{Hon}}, k_{\text{Hon}}, k_{\text{Дon}}) > 0, (1 \le j \le n-4),$

где a_i^* - из (7), *i*=1; 2; 3, $\Delta^{(0)}_j(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$ - определители Гурвица размерности *j* (1<*j*<*n*-3) полинома (6). Четыре уравнения, из которых находятся $I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, \mu$ (*n*-4) неравенства в (14) являются необходимыми условиями максимальной степени устойчивости системы (1), (2). Подтверждением этому является годограф (9), изображенный на рис. 2 и соответствующий уравнениям (14). Такой годограф не может иметь система максимальной степени устойчивости, т.к. очевидно, что вариацией параметров k_{Π}, k_{Π} и k_{Π} в (2) его можно изменить таким образом, что он будет отвечать устойчивому полиному (6).

Рис. 2 Годограф неоптимальной системы

Годограф рис. 2 получен для полинома (6), в котором

$$D_{I[n+I-n_g-2n_k]}(\lambda_1) = D_{I/20J}(\lambda_1) = (\lambda_1 + 1)^{20},$$

$$n = 24, n_g = 3, n_k = 1, \gamma_1 = 1, \omega_1 = 0, 11.$$

$$D(\lambda_1) = (\lambda_1 + 1)^{20}, n_g = 3, n_k = 1, \omega = 0, 3$$

Для получения достаточных условий оптимальности нужно к (14) добавить условие на направления годографа в точках пересечения им начала координат. В этом случае достаточными условиями оптимальности наряду с (14) будет условие на знак производной модифицированной мнимой части

(15) $Im_{l}(\omega_{l}^{2}) > 0$

где
$$Im_{I}(\omega^{2}) = \frac{\partial \omega^{-1} \operatorname{Im} D_{I(n+I)}(i\omega)}{\partial (\omega^{2})}, \quad \omega_{1}$$
 - частота, на которой

годограф $Z_{n0}(i\omega)$ (9) пересекает начало координат.

Из годографа рис. 2 следует, что для него условие (15) не выполняется, т.к. рассматриваемая производная отрицательна. На рис. 3 изображен годограф (9), соответствующий оптимальному по степени устойчивости решению и удовлетворяющий условиям (14), (15).

Рис. 3 Годограф оптимальной системы

Годограф рис. 3 получен для полинома (6), в котором $D_{I[n+I-n_g-2n_k]}(\lambda_1) = D_{I[20]}(\lambda_1) = (\lambda_1 + 1)^{20},$ $n = 24, n_g = 3, n_k = 1, \gamma_1 = 1, \omega_1 = 0, 3.$

Из годографа рис. З следует, любое изменение k_{Π} , k_{U} или $k_{Д}$ в рассматриваемом случае приводит к неустойчивости полинома (6). Таким образом, выполнение условий (14) и (15) обеспечивает в рассматриваемом случае максимальную степень устойчивости системы (1), (2).

3 Случай двух действительных корней и одной комплексно-сопряженной пары корней

В этом случае имеют место условия

(16) $n_g=2, n_k=1, \gamma_1=1,$

при которых крайними правыми корнями (5), (6) являются два действительных корня и одна комплексно-сопряженная пара корней. Согласно [6] условие (16) может быть только при

(17)
$$a_{i}^{*}(I_{\text{on}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = 0 \ (i = 1; 2), \ \Delta^{(0)}_{n-2}(I_{\text{on}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = 0, \ \Delta^{(0)}_{j}(I_{\text{on}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}) > 0, \ (1 < j < n-2),$$

где a_i^* - из (7), $\Delta^{(0)}_{j}(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$ - определители Гурвица размерности j (1<j<n-2) полинома (6). Из трех уравнений (17) невозможно найти четыре неизвестных $I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}$ и $k_{\text{Доп}}$. Четвертое недостающее уравнение может быть получено из условия о том, что в рассматриваемом случае годограф (9) полинома (6) касается в начале координат действительной оси. Такой факт имеет место при выполнении условия

$$(18) \qquad Im_{l}(\omega_{l}^{2}) = 0$$

где $Im_l(\omega^2)$ из (15). Из (18) следует, что полином

(19)
$$D_{n_l}^*(\omega^2) = Im_0(\omega^2) + i\omega Im_l(\omega^2),$$

где $n_1 = 2\left\lfloor \frac{n+1}{2} \right\rfloor - 1$, $\left\lfloor \frac{n+1}{2} \right\rfloor$ - целая часть числа $\frac{n+1}{2}$, имеет

ту же комплексно-сопряженную пару корней, что и исходный полином (6). Поэтому в оптимальном случае справедливо уравнение

(20)
$$\Delta_{n_l-1}^{(0)}(I_{on},k_{\Pi on})=0$$
,

где $\Delta_{n_l-1}^{(0)}(I_{on}, k_{\Pi on})$ - определитель Гурвица размерности n_1 -1 полинома (19).

Из четырех уравнений (17) и (19) можно определить четыре неизвестных $I_{\text{оп}}$, $k_{\text{Поп}}$, $k_{\text{Иоп}}$ и $k_{\text{доп}}$. Но условия (17) и (19) являются необходимыми условиями оптимальности. Это подтверждается годографом (9) полинома (6), изображенном на рис. 4, для которого условия (17) и (20) выполнены, но очевидно, что увеличением параметров $k_{\text{Поп}}$ и $k_{\text{Иоп}}$ полином (6) может быть сделан устойчивым.

Рис. 4 Годограф неоптимальной системы

Годограф рис. 4 получен для полинома (6), в котором $D_{I[n+I-n_g-2n_k]}(\lambda_1) = D_{I[20]}(\lambda_1) = (\lambda_1 + 1)^{20},$ $n = 23, n_g = 2, n_k = 1, \omega_1 = 0, 16.$

Достаточные условия оптимальности можно получить добавлением к (17), (20) условия на направление годографа в точке пересечения им на частоте ω_i начала координат. Это направление должно совпадать с направлением действительной оси, что имеет место при выполнении неравенства

(21)
$$Re_{l}(\omega_{l}^{2}) > 0$$
,
где $Re_{l}(\omega^{2}) = \frac{\partial \operatorname{Re} D_{l(n+l)}(i\omega)}{\partial(\omega^{2})}, D_{l(n+l)}(i\omega)$ из (6)

Условия (17), (20) и (21) являются достаточными условиями оптимальности в рассматриваемом случае. На рис. 5 изображен годограф (9), соответствующий оптимальному по степени ус-

Рис. 5 Годограф оптимальной системы

Годограф рис. 5 получен для полинома (6), в котором $D_{I[n+l-n_g-2n_k]}(\lambda_1) = D_{I/20J}(\lambda_1) = (\lambda_1 + 1)^{20},$ $n = 23, n_{\sigma} = 2, n_k = 1, \omega_1 = 0,325.$

4 Случай двух действительных и двух пар комплексно-сопряженных корней

В этом случае имеют место условия

(22) $n_g=2, n_k=2, \gamma_1=1, \gamma_2=1,$

при которых крайними правыми корнями (5), (6) являются два действительных корня и две комплексно-сопряженные пары корней. Согласно [6] условие (22) может быть только при (23) $a_i^*(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = 0$ (*i*=1;2), $\Delta^{(0)}_{n-1}(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$ $= \Delta^{(1)}_{n-4}(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}) = 0$, $\Delta^{(0)}_i(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Доп}}) > 0$, где 1 < j < n-4, $\Delta^{(0)}_{n-4}(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$, $\Delta^{(1)}_{n-4}(I_{\text{оп}}, k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}})$ основной и побочный определители Гурвица полинома (6), описанные в [9]. Четыре уравнения, из которых находятся $I_{\text{оп}}$, $k_{\text{Поп}}, k_{\text{Иоп}}, k_{\text{Доп}}$ и (*n*-4) неравенства в (23) являются, как и в рассмотренных случаях 2 и 3, необходимыми условиями максимальной степени устойчивости системы (1), (2). На рис. 6 изображен годограф полинома (6), построенного из условий (23), но который не является годографом оптимальной системы.

Рис. 6 Годограф неоптимальной системы

Годограф рис. 6 получен для полинома (6), в котором $D_{I[n+l-n_g-2n_k]}(\lambda_1) = D_{I[40]}(\lambda_1) = (\lambda_1 + 1)^{40},$ $n = 45, n_g = 2, n_k = 2, \omega_1 = 0, 1, \omega_2 = 0, 22.$

Оптимальность такой системы имеет место при добавлении следующих неравенств

(24) $\langle (Im_1(0), -Re_1(0)), (Re_1(\omega_1^2), Im_1(\omega_1^2)) \rangle < 0$ 12 (25) $Im_{l}(\omega_{l}^{2})Im_{l}(\omega_{2}^{2}) < 0$,

где $(Im_1(0), -Re_1(0))$ - вектор, перпендикулярный направлению годографа $Z_{n0}(i\omega)$ при $\omega = 0$, $(Re_1(\omega_1^2), Im_1(\omega_1^2))$ - вектор направления годографа $Z_{n0}(i\omega)$ при $\omega = \omega_1$, $\omega_1 < \omega_2$, функции $Im_1(\omega^2)$ и $Re_1(\omega^2)$ определены в (15) и (21) соответственно. Обоснование достаточности условий (23)-(25) следует из того, что при любом изменении $k_{\rm A}$ одна из комплексных пар корней переходит в правую полуплоскость, и никакими вариациями $k_{\rm II}$ и $k_{\rm H}$ избавиться от неустойчивости не представляется возможным. На рис. 7 изображен годограф полинома (6) оптимальной системы.

Рис. 7 Годограф оптимальной системы

Годограф рис. 7 получен для полинома (6), в котором $D_{I[n+1-n_g-2n_k]}(\lambda_1) = D_{I[40]}(\lambda_1) = (\lambda_1 + 1)^{40},$

 $n = 45, n_{\sigma} = 2, n_{k} = 2, \omega_{1} = 0, 15, \omega_{2} = 0, 28.$

Заключение

Таким образом проведено исследование пяти структур оптимальных по степени устойчивости решений при ПИД законе управления. Получены достаточные условия оптимальности каждой из возможных оптимальных структур. С помощью машинных методов расчета построены годографы замкнутых систем управления, для которых в одном случае выполняются только необходимые условия оптимальности, в другом – достаточные условия. Вид построенных годографов оптимальных систем наглядно отражает геометрический смысл полученных решений.

Литература

- 1. ГУРЕЦКИЙ Х. Анализ и синтез систем управления с запаздыванием. М.: Машиностроение, 1974.
- НЕЙМАРК Ю.И. Устойчивость линеаризованных систем Л.:ЛКВВИА, 1949.
- 3. НЕЙМАРК Ю.И. Динамические системы и управляемые процессы. М. :Наука, 1978.
- 4. ПОЛЯК Б.Т., ЩЕРБАКОВ П.С. Робастная устойчивость и управление. М. :Наука, 2002.
- 5. ГРЯЗИНА Е.Н. *К теории D-разбиения.* // АиТ. 2004 №12, С. 15-28.
- 6. ШУБЛАДЗЕ А.М. Достаточные условия экстремума в системах максимальной степени устойчивости. I. // АнТ. 1997 N 3. C. 93-105
- ШУБЛАДЗЕ А.М. Достаточные условия экстремума в системах максимальной степени устойчивости. II. // АнТ. 1997 N 8. C. 67-79
- 8. ШУБЛАДЗЕ А.М.,. ПОПАДЬКО В.Е., КУЗНЕЦОВ С.И., ЯКУШЕВА А.А. Исследование оптимальных по степени

устойчивости решений при ПИ управлении. // Проблемы управления 2008 №2. С12-21 ГАНТМАХЕР Ф.Р. *Теория матриц*. М.: Наука, 1967.

9.