УДК 021.8 + 025.1 ББК 78.34

МНОГОШАГОВЫЕ СЕТЕВЫЕ ИГРЫ С ПОЛНОЙ ИНФОРМАЦИЕЙ 1

Петросян Л. А. 2 , Седаков А. А. 3

(Факультет прикладной математики – процессов управления, Санкт-Петербургский государственный университет, Санкт-Петербург)

В статье рассматриваются многошаговые сетевые игры с полной информацией. В каждый момент игры задается текущая сетевая структура, связывающая игроков. Предполагается, что любое ребро сети имеет полезность (полезность одного игрока от связи со вторым), и игроки вправе изменять структуру сети на каждом шаге. Предлагается способ нахождения оптимального поведения игроков в играх такого типа.

Ключевые слова: сеть, сетевые игры, функция полезности, характеристическая функция, вектор Шепли, равновесие по Нэшу.

1. Построение многошаговой сетевой игры с полной информацией

Пусть $N=\{1,\ldots,n\}$ – множество игроков. Построим дерево игры – конечный древовидный граф K=(X,F) с начальной вершиной x_0 [2, 6]. Множество X есть множество вершин графа K, а $F:X\mapsto X$ есть точечно-множественное отображение,

¹ Текст приводится в соответствии с изданием «Математическая теория игр и ее приложения. – 2009. – Т. 1. №2».

 $^{^2}$ Леон Аганесович Петросян, доктор физико-математических наук, профессор (spbuoasis 7@peterlink.ru).

 $^{^3}$ Артем Александрович Седаков, кандидат физико-математических наук (formail@list.ru).

которое каждому элементу $x \in X$ ставит в соответствие множество F_x вершин графа, следующих непосредственно за вершиной x. Вершины x древовидного графа K, для которых $F_x = \emptyset$ будем называть окончательными (терминальными). Множество X вершин древовидного графа K представим стандартным образом в виде объединения n+1 непересекающихся множеств: $X = P_1 \cup \ldots \cup P_n \cup P_{n+1}$, где множество P_i – множество личных позиций игрока $i, i \in N$, а множество P_{n+1} – множество окончательных позиций древовидного графа K. В дальнейшем через i(x) будем обозначать игрока, который делает ход в вершине x в игре на древовидном графе K.

Опишем пошаговое развитие игрового процесса.

1.1. ПОСТРОЕНИЕ ДРЕВОВИДНОГО ГРАФА МНОГОШАГОВОЙ СЕТЕВОЙ ИГРЫ

Hачальный uаг. В начальной вершине x_0 древовидного графа K определена сеть $G_{x_0}=(N,\theta(x_0))$. Через g^{x_0} обозначим множество ребер сети G_{x_0} . Множество узлов N совпадает со множеством игроков (узел сети отождествляем с игроком), и $\theta(x_0):g^{x_0}\mapsto R$ — числовая функция, которую мы будем интерпретировать как ϕ ункцию полезности.

 $extit{\it Шаг 1.}$ Игрок $i(x_0)$ имеет следующие n альтернатив в вершине x_0 :

- не предпринимать никаких действий, при этом игровой процесс переходит в вершину $y_{11} \in F_{x_0}$;
- разорвать связь с одним игроком $j \in N, j \neq i(x_0)$, если ребро $(i(x_0), j) \in g^{x_0}$; при этом игровой процесс переходит в вершину $y_{1j} \in F_{x_0}$;
- предложить игроку k, $k \neq i(x_0)$ установить связь $(i(x_0), k)$, если ребро $(i(x_0), k) \notin g^{x_0}$; при этом игровой процесс переходит в вершину $y_{1k} \in F_{x_0}$.

Таким образом, каждая из n вершин y_{11} , $\{y_{1j}\}_j$, $\{y_{1k}\}_k$ принадлежит множеству F_{x_0} . В зависимости от выбора игроком $i(x_0)$ альтернативы, в вершинах множества F_{x_0} начальная сеть изменя-

ется, соответственно множество ребер новой сети имеет следующий вид:

$$g^{y_{11}}=g^{x_0},$$
 если игрок $i(x_0)$ не предпринимает никаких действий; $g^{y_{1j}}=g^{x_0}\setminus (i(x_0),j),$ если игрок $i(x_0)$ разрывает связь с игроком $j;$ $g^{y_{1k}}=g^{x_0}\cup (i(x_0),k),$ если игрок $i(x_0)$ устанавливает связь с игроком $k.$

Следовательно, для вершины $x_1 \in F_{x_0} = \{y_{11}, \{y_{1j}\}_j, \{y_{1k}\}_k\}$ множество ребер g^{x_1} однозначно определено. Если $x_1 \notin P_{n+1}$, то мы переходим к рассмотрению шага 2 для каждой вершины $x_1 \in F_{x_0}$. Этот шаг полностью аналогичен шагу 1, поэтому, опуская изложение второго шага игры, рассмотрим некоторый шаг t.

Шаг t $(1 < t \leqslant l)$. Предположим, мы построили древовидный граф до вершин, которые можно достичь из начальной вершины x_0 не более чем за t-1 шагов. Пусть $\{x_0, x_1, \ldots, x_{t-1}\}$ – некоторая траектория из x_0 построенного древовидного графа в вершину x_{t-1} , в которую можно попасть из x_0 за t-1 шаг. По построению во всех позициях $x_0, x_1, \ldots, x_{t-1}$ соответствующие множества ребер $g^{x_0}, g^{x_1}, \ldots, g^{x_{t-1}}$ однозначно определены. Определим множество g^{x_t} .

В вершине x_{t-1} у игрока $i(x_{t-1})$ имеются следующие n альтернатив:

- не предпринимать никаких действий, при этом игровой процесс переходит в вершину $y_{t1} \in F_{x_{t-1}}$;
- разорвать связь с одним игроком $j \in N, j \neq i(x_{t-1})$, если ребро $(i(x_{t-1}), j) \in g^{x_{t-1}}$; при этом игровой процесс переходит в вершину $y_{tj} \in F_{x_{t-1}}$;
- предложить игроку $k, k \neq i(x_{t-1})$ установить связь $(i(x_{t-1}), k)$, если ребро $(i(x_{t-1}), k) \notin g^{x_{t-1}}$; при этом игровой процесс переходит в вершину $y_{tk} \in F_{x_{t-1}}$.

Таким образом, каждая из n вершин y_{t1} , $\{y_{tj}\}_j$, $\{y_{tk}\}_k$ принадлежит множеству $F_{x_{t-1}}$. В зависимости от выбора игроком $i(x_{t-1})$ альтернативы, в вершинах множества $F_{x_{t-1}}$ текущая сеть изменяется, соответственно множество ребер новой сети имеет следующий вид:

$$g^{y_{t1}}=g^{x_{t-1}},$$
 если игрок $i(x_{t-1})$ не предпринимает никаких действий; $g^{y_{tj}}=g^{x_{t-1}}\setminus (i(x_{t-1}),j),$ если игрок $i(x_{t-1})$ разрывает связь с игроком $j;$ $g^{y_{tk}}=g^{x_{t-1}}\cup (i(x_{t-1}),k),$ если игрок $i(x_{t-1})$ устанавливает связь с игроком $k.$

Следовательно, для вершины $x_t \in F_{x_{t-1}} = \{y_{t1}, \{y_{tj}\}_j, \{y_{tk}\}_k\}$ множество ребер g^{x_t} однозначно определено. Если $x_t \notin P_{n+1}$, то мы переходим к рассмотрению очередного шага построения древовидного графа для каждой вершины $x_t \in F_{x_{t-1}}$. Если в вершине x_t игровой процесс не заканчивается, т. е., если $x_t \notin P_{n+1}$, то мы переходим к рассмотрению следующего шага игры, и построение игры на древовидном графе продолжается аналогичным образом. При t=l построение древовидного графа K закончено.

1.2. ОПРЕДЕЛЕНИЕ ИНДИВИДУАЛЬНЫХ ВЫПЛАТ ИГРОКАМ

Определение 1. Пусть $S\subseteq N$. Вещественную функцию

 $v: X \times 2^N \mapsto R$, заданную на декартовом произведении множества X и множества всех подмножеств множества N и определенную по правилу

(1)
$$v(y,S) = \sum_{(i,j)\in g^y:\ i,j\in S} \theta_{ij}(y),$$

где $y\in X$, будем называть характеристической функцией. Здесь $\theta_{ij}(y)$ – значение функции полезности $\theta(y)$, определенной сетевой 124

игрой $G_y = (N, \theta(y))$, которое представляет собой полезность игрока i от связи c игроком j b вершине b.

Задав конечное множество игроков N и функцию $v(y,\cdot)$, определенную по правилу (1), можно построить игру в форме характеристической функции, в которой для каждого игрока определены лишь полезности связей с другими игроками. Определим выплаты игрокам в сети. С этой целью выбираем некоторый принцип оптимальности теории кооперативных игр. Для простоты в качестве такого принципа оптимальности выберем вектор Шепли [9], и с его помощью определим дележ $\gamma(y)=(\gamma_1(y),\ldots,\gamma_n(y))$, компоненты которого вычисляются по формуле:

(2)
$$\gamma_k(y) = \sum_{\{S: S \subseteq N, k \in S\}} \frac{(n-s)!(s-1)!}{n!} [v(y,S) - v(y,S \setminus k)].$$

Здесь s – число элементов множества S, v(y,S) – характеристическая функция, определенная по правилу (1).

Распишем более подробно выражение, стоящее в квадратных скобках в правой части равенства (2). Подставив значения характеристической функции $v(y,\cdot)$ из (1) для любого $y\in X$ и $k\in N$, имеем:

$$v(y,S) - v(y,S \setminus k) =$$

$$= \sum_{(i,j)\in g^y: i,j\in S} \theta_{ij}(y) - \sum_{(i,j)\in g^y: i,j\in S\setminus k} \theta_{ij}(y) =$$

$$= \sum_{(i,k)\in g^y: i\in S\setminus k} \theta_{ik}(y) + \sum_{(k,j)\in g^y: j\in S\setminus k} \theta_{kj}(y).$$

С учетом полученного компоненты вектора Шепли записы-

ваются в виде:

$$\gamma_k(y) = \sum_{\{S: S \subseteq N, k \in S\}} \frac{(n-s)!(s-1)!}{n!} \left[\sum_{(i,k) \in g^y: i \in S \setminus k} \theta_{ik}(y) + \sum_{(k,j) \in g^y: j \in S \setminus k} \theta_{kj}(y) \right],$$

где
$$y \in X$$
, $k \in N$.

Величина
$$\sum\limits_{(i,k)\in g^y:\ i\in S\setminus k} heta_{ik}(y) + \sum\limits_{(k,j)\in g^y:\ j\in S\setminus k} heta_{kj}(y)$$
 пред-

ставляет собой вклад игрока k, если тот, присоединившись к коалиции $S\setminus k$, приведет к образованию коалиции S. Здесь первое слагаемое $\sum_{(i,k)\in g^y:\ i\in S\setminus k}\theta_{ik}(y)$ представляет собой дополнитель-

ную полезность игроков коалиции $S\setminus k$, внесенную игроком k. Второе слагаемое $\sum\limits_{(k,j)\in g^y:\ j\in S\setminus k} \theta_{kj}(y)$ представляет собой допол-

нительную полезность игрока k, получаемую при присоединении к игрокам коалиции $S\setminus k$.

Пусть в игре реализовался путь $\{x_0, x_1, \dots, x_l\}$. Тогда выигрыш игрока $i \in N$ вдоль этого пути определяется следующим образом:

$$\sum_{x \in \{x_0, \dots, x_l\}} \gamma_i(x), \quad i \in N,$$

где $\gamma_i(x)$ представляет собой i-ю компоненту вектора Шепли, вычисленного по правилу (3) в сетевой игре $G_x = (N, \theta(x))$.

1.3. ФОРМАЛЬНОЕ ОПРЕДЕЛЕНИЕ МНОГОШАГОВОЙ СЕТЕВОЙ ИГРЫ С ПОЛНОЙ ИНФОРМАЦИЕЙ

Определение 2. Многошаговой сетевой игрой n лиц c полной информацией называется древовидный граф K, на котором:

- задано разбиение множества вершин X на n+1 множество P_1 , $P_2,\ldots,\ P_n,P_{n+1}$, где P_i , $i\in N$ есть множество личных позиций игрока i, множество $P_{n+1}=\{x:F_x=\emptyset\}$ есть множество окончательных вершин;
- в каждой вершине $x \in X$ однозначным образом задана сеть $G_x = (N, \theta(x))$: множество узлов сети N (множество игроков) и функция полезности $\theta: g^x \mapsto R$.

Определение 3. Стратегией $u_i(\cdot)$ игрока $i \in N$ назовем отображение, которое каждой вершине $x \in P_i$ ставит в соответствие вершину $y \in F_x$ либо вероятностное распределение p^x на множестве F_x

$$p^x = \{p^x(y)\}, \ y \in F_x, \ p^x(y) \geqslant 0, \ \sum_{y \in F_x} p^x(y) = 1.$$

Для каждого набора стратегий (ситуации) $u(\cdot)=(u_1(\cdot),\ldots,u_n(\cdot))$ в игре на древовидном графе K определим функции выигрыша игроков следующим образом. Пусть в ситуации $u(\cdot)=(u_1(\cdot),\ldots,u_n(\cdot))$ реализовался некоторый путь $\{x_0,x_1,\ldots,x_l\}$ из начальной вершины x_0 в окончательную x_l . Тогда функция выигрыша игрока i:

$$H_i(u(\cdot)) = \sum_{x \in \{x_0, \dots, x_l\}} \gamma_i(x), \quad i \in N.$$

Здесь $\gamma_i(x)$ есть выплата игроку i, которая получена как i-ая компонента вектора Шепли, рассчитанного по характеристической

функции $v(x,\cdot)$ для сетевой игры $G_x=(N,\theta(x))$, заданной в вершине x (см. (3)).

Определение 4. Набор стратегий $u^*(\cdot) = (u_1^*(\cdot), \dots, u_i^*(\cdot), \dots, u_n^*(\cdot))$ называется равновесием по Нэшу в многошаговой сетевой игре на древовидном графе K с начальной вершиной x_0 , если

$$H_i(u^*(\cdot)||u_i(\cdot)) \leqslant H_i(u^*(\cdot))$$

для любых $i \in N$ и любых допустимых u_i .

2. Построение ситуации равновесия по Нэшу в многошаговой сетевой игре

Предположим, что длина игры равна l+1. Для определения оптимального поведения игроков будем использовать концепцию абсолютного равновесия в конечношаговой игре с полной информацией.

Введем функцию Беллмана [1, 5] φ_i^t как выигрыш игрока i в ситуации равновесия по Нэшу в игре за l-t шагов (положим $\varphi_i^{l+1}=0$). Значения функции Беллмана φ во всех вершинах древовидного графа K определяются стандартным образом методом обратной индукции (решая уравнение Беллмана от окончательных вершин графа K к начальной при граничном условии).

В данном случае для любой окончательной вершины $x_l \in P_{n+1}$ граничное условие выглядит следующим образом:

$$\varphi_i^l(x_l) = \gamma_i(x_l), \quad i \in N.$$

В промежуточной вершине x_t древовидного графа K функция Беллмана удовлетворяет следующему рекуррентному соотно-

шению:

$$\varphi_{i(x_{t})}^{t}(x_{t}) = \max_{y \in F_{x_{t}}} \left(\gamma_{i(x_{t})}(x_{t}) + \varphi_{i(x_{t})}^{t+1}(y) \right) =$$

$$= \gamma_{i(x_{t})}(x_{t}) + \max_{y \in F_{x_{t}}} \left(\varphi_{i(x_{t})}^{t+1}(y) \right) =$$

$$= \gamma_{i(x_{t})}(x_{t}) + \varphi_{i(x_{t})}^{t+1}(\bar{y}).$$

Для игрока $j \neq i(x_t)$ значения функции Беллмана определяются по правилу:

(5)
$$\varphi_j^t(x_t) = \gamma_j(x_t) + \varphi_j^{t+1}(\bar{y}).$$

Решая уравнение Беллмана, находим значения $\varphi_i^t, t=0,\dots,l,$ $i\in N.$ При t=0 уравнение решено. Вектор $(\varphi_1^0(x_0),\dots,\varphi_n^0(x_0))$ назовем значением многошаговой сетевой игры с полной информацией.

Вместе с нахождением значения многошаговой сетевой игры определяются и оптимальные стратегии игроков, которые по построению образуют ситуацию абсолютного равновесия в игре: в каждой вершине $x \in X$ древовидного графа K игрок i(x) выбирает вершину $y \in F_x$ согласно правилу (4). В ситуации абсолютного равновесия реализуется некоторый путь в графе из начальной вершины в окончательную. Такой путь будем называть оптимальным путем в многошаговой сетевой игре.

На основании приведенного алгоритма имеет место следующее утверждение.

Теорема 1. Построенная ситуация $u^*(\cdot) = (u_1^*(\cdot), \dots, u_n^*(\cdot))$, в которой для каждой вершины $x \notin P_{n+1}$, стратегия $u_i^*(x)$ игрока i определяется по правилу

$$u_i^*(x) = \bar{y},$$

где \bar{y} находится из соотношения (4), образует ситуацию абсолютного равновесия по Нэшу в многошаговой сетевой игре, заданной на древовидном графе K.

Однако, не всегда гарантируется единственность абсолютного равновесия по Нэшу в многошаговой сетевой игре.

Замечание 1. Пусть наряду с вершиной $\bar{y} \in F_{x_t}$, доставляющей максимальное значение функции $\varphi_{i(x_t)}^{t+1}(y)$ в (4), вершина $\tilde{y} \in F_{x_t}$ также является точкой максимума этой функции. Тогда с очевидностью выполняется следующее равенство:

$$\varphi_{i(x_t)}^{t+1}(\bar{y}) = \varphi_{i(x_t)}^{t+1}(\tilde{y}),$$

которое, в свою очередь, приводит к одному и тому же значению $\varphi^t_{i(x_t)}(x_t).$ Следовательно, игроку, принимающему решение в вер-

шине x_t (игроку $i(x_t)$), можно выбрать любую вершину $y\in F_{x_t}$, доставляющую максимум функции $\varphi_{i(x_t)}^{t+1}(y)$ в (4).

В тех же вершинах \bar{y} и \tilde{y} для отличных от $i(x_t)$ игроков $j \in N$, $j \neq i(x_t)$ в общем случае справедливо следующее соотношение:

$$\varphi_j^{t+1}(\bar{y}) \neq \varphi_j^{t+1}(\tilde{y}).$$

Данное обстоятельство означает, что выбор игроком $i(x_t)$ вершины из множества

(6)
$$I(x_t) = \arg \max_{y \in F_{x_t}} \varphi_{i(x_t)}^{t+1}(y)$$

влияет на решения последующих игроков (в силу различия значений функции Беллмана этих игроков в точках множества $I(x_t)$). Таким образом, в общем случае в многошаговой сетевой игре имеет место неединственность оптимального пути с различными значениями функции выигрыша.

Случай неединственности оптимального пути легко обходится введением понятия индифферентного равновесия по Нэшу в многошаговой игре с полной информацией [8]. Поскольку в общем случае $|I(x_t)| \geqslant 1$, предполагается, что игроку $i(x_t)$ безразличен выбор вершины из множества $I(x_t)$. Предпишем $i(x_t)$ выбирать эти вершины с одинаковыми вероятностями, т. е. $p^{x_t}(y) = 1/|I(x_t)|$, для любого $y \in I(x_t)$. Тогда в промежуточной 130

вершине x_t древовидного графа K функция φ_i^t удовлетворяет аналогичному (4) рекуррентному соотношению:

(7)
$$\varphi_{i(x_t)}^t(x_t) = \gamma_{i(x_t)}(x_t) + \frac{1}{|I(x_t)|} \cdot \sum_{y \in I(x_t)} \varphi_{i(x_t)}^{t+1}(y).$$

Для игрока $j \neq i(x_t)$ значения функции φ определяются по правилу:

(8)
$$\varphi_j^t(x_t) = \gamma_j(x_t) + \frac{1}{|I(x_t)|} \cdot \sum_{y \in I(x_t)} \varphi_j^{t+1}(y).$$

Решая уравнение Беллмана, находим значения φ_i^t , $t=0,\ldots,l$, $i\in N$. При t=0 уравнение решено. Вектор $(\varphi_1^0(x_0),\ldots,\varphi_n^0(x_0))$ также назовем значением многошаговой сетевой игры с полной информацией.

По аналогии с теоремой 1 справедлива следующая теорема. **Теорема 2.** Построенная ситуация $u^{IE}(\cdot) =$

 $(u_1^{IE}(\cdot),\dots,u_n^{IE}(\cdot))$, в которой для каждой вершины $x\notin P_{n+1}$, стратегия $u_i^{IE}(x)$ игрока i определяется по правилу

$$u_i^{IE}(x) = \{p^x(y)\}, y \in I(x), p^x(y) = \frac{1}{|I(x)|},$$

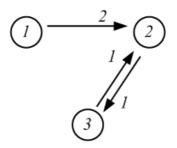
где вершины у находятся с использованием соотношений (6)-(7), образует ситуацию индифферентного равновесия по Нэшу в многошаговой сетевой игре, заданной на древовидном графе K.

3. Численный пример многошаговой сетевой игры с полной информацией

Для иллюстрации алгоритма построения решения сетевой игры приведем контрольный пример.

Рассмотрим трехшаговую сетевую игру. Пусть $N=\{1,2,3\}$ есть множество игроков. Построим древовидный граф K с начальной вершиной в x_0 .

Пусть в x_0 задана сеть, представленная на рис. 1.



Puc. 1. Сеть G_{x_0}

Множество ребер $g^{x_0} = \{(1,2),(2,3),(3,2)\}$. Зададим функцию полезности $\theta(x_0)$ в виде матрицы $\Theta(x_0)$:

$$\Theta(x_0) = \left(\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right).$$

Предположим, что в начальной вершине ходит игрок 1, у которого есть три альтернативы: (1) не предпринимать никаких действий (при этом игра переходит в вершину x_1), (2) разорвать связь с игроком 2 (при этом игра переходит в вершину x_2), (3) наладить связь с игроком 3 (при этом игра переходит в вершину x_3). В зависимости от выбора альтернативы игроком 1 имеем:

 $g^{x_1} = g^{x_0},$ если игрок 1 выбирает первую альтернативу в вершине $x_0;$

 $g^{x_2} = g^{x_0} \setminus (1,2), \;\;\;$ если игрок 1 выбирает вторую альтернативу в вершине $x_0;$

 $g^{x_3} = g^{x_0} \cup (1,3), \;\;$ если игрок 1 выбирает третью альтернативу в вершине $x_0.$

Пусть функции полезностей $\theta(x_1)$, $\theta(x_2)$ и $\theta(x_3)$ заданы в виде следующих матриц:

$$\Theta(x_1) = \begin{pmatrix} 0 & -3 & -1 \\ 2 & 0 & 2 \\ 5 & 1 & 0 \end{pmatrix}, \Theta(x_2) = \Theta(x_3) = \begin{pmatrix} 0 & 3 & -2 \\ -1 & 0 & 1 \\ 3 & 1 & 0 \end{pmatrix}.$$

Будем считать, что вершины x_1 и x_3 являются окончательными, а вершина x_2 является личной позицией игрока 2. В x_2 второй игрок имеет три альтернативы: (1) не предпринимать никаких действий (при этом игра переходит в вершину x_4), (2) наладить связь с игроком 1 (при этом игра переходит в вершину x_5), (3) разорвать связь с игроком 3 (при этом игра переходит в вершину x_6). В зависимости от выбора альтернативы игроком 2 имеем:

$$g^{x_4} = g^{x_2},$$
 если игрок 2 выбирает первую альтернативу в вершине $x_2;$

 $g^{x_5} = g^{x_2} \cup (2,1), \;\;$ если игрок 2 выбирает вторую альтернативу в вершине $x_2;$

 $g^{x_6} = g^{x_2} \setminus (2,3), \;\;$ если игрок 2 выбирает третью альтернативу в вершине $x_2.$

Пусть функции полезностей $\theta(x_4)$, $\theta(x_5)$ и $\theta(x_6)$ заданы в виде следующих матриц:

$$\Theta(x_4) = \begin{pmatrix} 0 & -3 & -1 \\ 2 & 0 & 2 \\ 5 & 1 & 0 \end{pmatrix}, \Theta(x_5) = \Theta(x_6) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 2 & 4 & 0 \end{pmatrix}.$$

Будем считать, что вершины x_4 и x_6 являются окончательными, а вершина x_5 является личной позицией игрока 3. В x_5 третий игрок имеет три альтернативы: (1) не предпринимать никаких

действий (при этом игра переходит в вершину x_7), (2) наладить связь с игроком 1 (при этом игра переходит в вершину x_8), (3) разорвать связь с игроком 2 (при этом игра переходит в вершину x_9). В зависимости от выбора альтернативы игроком 2 имеем:

$$g^{x_7}=g^{x_5},$$
 если игрок 3 выбирает первую альтернативу в вершине $x_5;$ $g^{x_8}=g^{x_5}\cup(3,1),$ если игрок 3 выбирает вторую альтернативу в вершине $x_5;$ $g^{x_9}=g^{x_5}\setminus(3,2),$ если игрок 3 выбирает третью альтернативу в вершине $x_5.$

Пусть функции полезностей $\theta(x_7)$, $\theta(x_8)$ и $\theta(x_9)$ заданы в виде следующих матриц:

$$\Theta(x_7) = \Theta(x_8) = \Theta(x_9) = \begin{pmatrix}
0 & -3 & -1 \\
2 & 0 & 2 \\
5 & 1 & 0
\end{pmatrix}.$$

Будем считать, что вершины $x_7,\ x_8,\ x_9$ являются окончательными вершинами. Тогда множества личных позиций игроков $P_1,\ P_2,\ P_3$ и множество окончательных вершин P_4 имеют вид: $P_1=\{x_0\},P_2=\{x_2\},P_3=\{x_5\},P_4=\{x_1,x_3,x_4,x_6,x_7,x_8,x_9\},$ а древовидный граф K представлен на рис. 2.

Для начала вычислим индивидуальные выплаты игрокам в каждой вершине графа K. Рассмотрим вершину x_0 . Построим характеристическую функцию по правилу (1):

$$\begin{split} v(x_0,\{1,2,3\}) &= 4,\\ v(x_0,\{1,2\}) &= 2,\\ v(x_0,\{1,3\}) &= 0,\\ v(x_0,\{2,3\}) &= 2,\\ v(x_0,\{1\}) &= v(x_0,\{2\}) = v(x_0,\{3\}) = 0. \end{split}$$

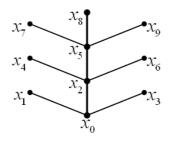


Рис. 2. Древовидный граф К

Индивидуальные выплаты игрокам в x_0 вычисляются в соответствии с вектором Шепли по правилу (3). Таким образом получаем вектор:

$$\gamma(x_0) = (1, 2, 1).$$

Аналогичным образом вычисляются индивидуальные выплаты игрокам в остальных вершинах древовидного графа K. Приведем их окончательные значения:

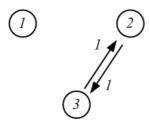
$$\begin{split} \gamma(x_1) &= (-1,5,0,1,5), & \gamma(x_6) &= (0,2,2), \\ \gamma(x_2) &= (0,1,1), & \gamma(x_7) &= (1,2,5,1,5), \\ \gamma(x_3) &= (0,5,2,5,0), & \gamma(x_8) &= (3,5,2,5,4), \\ \gamma(x_4) &= (0,1,5,1,5), & \gamma(x_9) &= (1,2,1). \\ \gamma(x_5) &= (-0,5,2,5,3), \end{split}$$

После определения выплат игрокам в каждой вершине графа K построение ситуации абсолютного равновесия в многошаговой сетевой игре не представляет особых трудностей. Данная процедура полностью аналогична задаче отыскания ситуации абсолютного равновесия в многошаговой игре с полной информацией с той лишь разницей, что в классической постановке выигрыши игроков заданы в окончательных вершинах графа игры, а в промежуточных полагаются равными нулю. Искомая ситуация абсолютного равновесия в многошаговой сетевой игре находится с использованием соотношений (4)-(5).

Оптимальные стратегии игроков следующие:

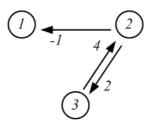
$$u_1^*(x_0) = x_2, \quad u_2^*(x_2) = x_5, \quad u_3^*(x_5) = x_8.$$

В ситуации абсолютного равновесия (u_1^*, u_2^*, u_3^*) реализуется оптимальный путь $\{x_0, x_2, x_5, x_8\}$ из начальной вершины x_0 в окончательную x_8 . Вдоль оптимального пути игра развивается следующим образом. В начальный момент задана сеть G_{x_0} , указанная на рис. 1. Далее игрок 1 разрывает связь со вторым игроком, что приводит к сети G_{x_2} , показанной на рис. 3. После этого делает



 $Puc. 3. Cemь G_{x_2}$

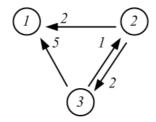
ход игрок 2, который за свой ход устанавливает связь с игроков 1, что приводит к сети G_{x_5} , показанной на рис. 4. И, наконец,



 $Puc. 4. Cemь G_{x_5}$

своим ходом игрок 3 заканчивает игру, установив связь с игроком 1, что приводит к сети G_{x_8} , показанной на рис. 5.

Значение многошаговой сетевой игры равно (4,8,9), а пошаговые индивидуальные выплаты следующие: $\gamma(x_0)=136$



 $Puc. 5. Cemь G_{x_8}$

 $(1,2,1), \quad \gamma(x_2) = (0,1,1), \quad \gamma(x_5) = (-0,5,2,5,3), \quad \gamma(x_8) = (3,5,2,5,4).$

Литература

- 1. БЕЛЛМАН Р. *Динамическое программирование.* М, 1960.
- 2. ПЕТРОСЯН Л.А., КУЗЮТИН Д.В. Игры в развернутой форме: оптимальность и устойчивость. СПб, 2000.
- 3. ПЕТРОСЯН Л.А., СЕДАКОВ А.А., СЮРИН А.Н. *Многошаговые игры с коалиционной структурой* // Вестник СПбГУ. 2006. Т. 10. №3. С. 97-110.
- 4. ADJEROH D., KANDASWAMY V. Game-Theoretic Analysis of Network Community Structure // International Journal of Computational Intelligence Res. 2007. V. 3. №4. P. 313-325.
- 5. BELLMAN R.E. *On the Theory of Dynamic Programming*. Proceedings of the National Academy of Sciences, 1952.
- 6. KUHN H.W. *Extensive Games and Problem Information* // Ann. Math Studies. 1953. V. 28. P. 193-216.
- 7. NASH J. *Non-cooperative Games* // Ann. of Math. 1951. V. 54. P. 286-295.
- 8. PETROSJAN L.A., MAMKINA S.I. *Value for the Games with Changing Coalitional Structure //* Games Theory and Applications. 2005. V. 10. P. 141-152.

- 9. SHAPLEY L.S. *A Value for n-Person Games*. Contributions to the Theory of Games II, Princeton: Princeton University Press. 1953. P. 307-317.
- 10. VIVES X. *Nash equilibrium with strategic complementarities*// Journal of Mathematical Economics. 1990. V. 19. №3.
 P. 305-321.
- 11. VIVES X. Strategic Complementarities in Multi-Stage Games. CEPR Discussion Papers 5583. C.E.P.R. Discussion Papers, 2006.

MULTISTAGE NETWORKING GAMES WITH FULL INFORMATION

Leon Petrosjan, Faculty of Applied Mathematics and Control Processes, Saint-Peterburg State University, Doctor of Sc., professor (spbuoasis7@peterlink.ru).

Artem Sedakov, Faculty of Applied Mathematics and Control Processes, Saint-Peterburg State University, Cand.Sc. (formail@list.ru).

Abstract: Multistage networking games with full information are considered. The network structure which connects the players is defined at every time moment. We assume that each verge has a utility (the player's profit from the connection with another player), and players have a right to change the network structure at every stage. The approach to define optimal players' behavior is proposed.

Keywords: network, networking games, utility, Shapley value, Nash equilibrium.