УДК 681.5.011 ББК 32.965

ОБ АНАЛИТИЧЕСКОМ РЕШЕНИИ СИСТЕМ МАТРИЧНЫХ НЕРАВЕНСТВ, ДВОЙСТВЕННЫХ К СИСТЕМАМ НЕРАВЕНСТВ ЛЯПУНОВА ¹

Поздяев В. В. 2

(Арзамасский политехнический институт (филиал) Нижегородского государственного технического университета, Арзамас)

Рассмотрены системы неравенств Ляпунова произвольного порядка. Представлен аналитический способ нахождения решений двойственных систем матричных неравенств. Детально рассмотрены некоторые частные случаи, дающие достаточные условия неразрешимости исходных систем неравенств Ляпунова.

Ключевые слова: линейные системы, матричные неравенства, неравенства Ляпунова.

Введение

Системы линейных матричных неравенств (ЛМН) — один из важнейших инструментов современной теории управления. Одна из причин этого — разнообразие задач, сводимых к задачам выпуклой оптимизации с участием ЛМН [4]. Другая — наличие эффективных алгоритмов численного решения последних.

Для практической работы с ЛМН существуют различные программные продукты, как включенные в состав интегрированных сред MATLAB, SCILAB, так и разрабатываемые независимо. Тем не менее, теоретический анализ свойств таких систем

¹ Работа выполнена при частичной финансовой поддержке РФФИ (гранты №07-01-92166, №08-01-97036).

² Владимир Васильевич Поздяев, кандидат физико-математических наук, стариий преподаватель (vpozdyayev@gmail.ru).

неравенств, начинающийся с вопроса об их разрешимости, может представлять для исследователя ничуть не меньший интерес. По этой причине аналитические результаты имеют особую ценность.

Ввиду высокой сложности задача установления разрешимости систем ЛМН аналитическим путем до сих пор не решена даже для кажущегося простым случая систем нескольких неравенств Ляпунова, возникающих, например, в задачах об устойчивости систем случайной структуры с неизвестными вероятностями перехода [8] и систем, описываемых дифференциальными включениями [5]. Результаты в этой области малочисленны и имеют ограниченное применение. Первые результаты были получены Каменецким и Пятницким [5]. В своей работе они связывают разрешимость системы неравенств Ляпунова с существованием седловой точки некоторой функции. Однако явного критерия разрешимости ими предложено не было. Необходимые условия разрешимости приводятся в [6, 7]; необходимые и достаточные критерии разрешимости некоторого ограниченного класса систем ЛМН второго порядка представлены в [9, 10, 11]. (Отметим, что квадратичные функции Ляпунова и ЛМН как средство их нахождения являются не единственным инструментом решения упомянутых задач — особенно при изучении нелинейных систем. Например, в [1] рассматриваются нелинейные переключаемые системы специального вида, и для них приводятся достаточные условия существования и способы построения различных неквадратичных функций Ляпунова.)

Автором был сформирован подход, на основе которого были получены аналитические критерии разрешимости систем неравенств Ляпунова произвольного конечного числа динамических систем второго порядка [2]. Позже он был распространен на линейные матричные неравенства второго порядка произвольного вида [3]. Данный подход и полученные с его помощью результаты могут иметь преимущество перед численными методами в таких задачах, как, например, определение множества значений параметров, для которых линейная система второго порядка с

переключениями, матрицы режимов которой зависят от данных параметров, будет устойчивой или стабилизируемой (с квадратичной общей функцией Ляпунова).

В силу вышеупомянутой сложности общей задачи естественным развитием полученных результатов могут стать аналитические критерии разрешимости для различных конкретных типов систем ЛМН произвольного порядка. В данной работе рассматривается один из базовых типов таких систем, а именно, системы классических неравенств Ляпунова (произвольного порядка). Мы показываем, как аналитически находить различные типы решений двойственных систем ЛМН, получая таким образом достаточные условия неразрешимости исходных систем неравенств Ляпунова.

1. Двойственные системы

Известно [4], что неразрешимость системы (1) $P>0, \quad A_i^{\rm T}P+PA_i<0, \quad i=1,\ldots,m,$ где $A_i\in\mathbb{R}^{n\times n}$, эквивалентна существованию симметричных матриц Q_0,\ldots,Q_m , не всех равных нулю, таких что

$$Q_0 \geqslant 0, \dots, Q_m \geqslant 0, \quad Q_0 = \sum_{i=1}^m (Q_i A_i^{\mathrm{T}} + A_i Q_i).$$

Если известно, что все матрицы A_i устойчивы (в последующих параграфах мы будем предполагать, что это условие выполняется), неравенство P>0 в (1) является излишним и его можно исключить или, эквивалентно, положить $Q_0=0$. В этом случае неразрешимость (1) эквивалентна разрешимости

$$Q_1 \geqslant 0, \dots, Q_m \geqslant 0, \quad \sum_{i=1}^m (Q_i A_i^{\mathrm{T}} + A_i Q_i) = 0.$$

Далее нас будет интересовать нахождение (ненулевых) матриц $Q_i\geqslant 0$, удовлетворяющих последнему уравнению.

Каждая из матриц $Q_i\geqslant 0$ может быть представлена в форме $Q_i=q_iq_i^{\rm T}=q_{i1}q_{i1}^{\rm T}+\ldots+q_{ir_i}q_{ir_i}^{\rm T},\,q_i\in\mathbb{R}^{n\times r_i}$, где $r_i={\rm rank}\,Q_i$ и $q_{ij}-j$ -й столбец q_i . Двойственная система ЛМН тогда сводится к следующему уравнению относительно векторов x_k и y_k :

(2)
$$\sum_{i=1}^{m} (Q_i A_i^{\mathrm{T}} + A_i Q_i) = \sum_{i=1}^{m} \sum_{j=1}^{r_i} (q_{ij} q_{ij}^{\mathrm{T}} A_i^{\mathrm{T}} + A_i q_{ij} q_{ij}^{\mathrm{T}}) =$$

$$= \sum_{k=1}^{r} (x_k y_k^{\mathrm{T}} + y_k x_k^{\mathrm{T}}) = 0,$$

где $r=\sum_{i=1}^m r_i$; векторы $x_k,\ k=1,\ldots,r$, равны $q_{11},\ q_{12},\ldots,\ q_{1r_1},\ q_{21},\ldots,\ q_{mr_m}$; векторы y_k — соответствующим $A_1q_{11},\ldots,\ A_mq_{mr_m}$.

В следующих разделах мы представляем результаты, характеризующие свойства решений данного уравнения, и используем их для определения его разрешимости и нахождения решений при r=2 и r=3. Первый случай дает более конструктивную версию критерия, приведенного в [11]. Второй является существенно новым результатом и представляет собой следующий по сложности этап установления (не)разрешимости системы неравенств Ляпунова.

2. Вспомогательные результаты

Временно забудем о происхождении векторов x_k и y_k и рассмотрим уравнение

(3)
$$M \equiv \sum_{k=1}^{r} (x_k y_k^{\mathrm{T}} + y_k x_k^{\mathrm{T}}) = 0$$

как самостоятельный объект. Следующие результаты составляют основу дальнейших построений.

<u>Лемма 1.</u> Если выполняется равенство (3), то хотя бы один из векторов x_1 и y_1 является линейной комбинацией x_k , $k=2,\ldots,r$.

Доказательство. Пусть z — произвольный вектор, ортого-

нальный x_2, \ldots, x_r : $x_k^{\mathrm{T}} z = 0, k = 2, \ldots, r$. Тогда

(4)
$$z^{\mathrm{T}}Mz = \sum_{k=1}^{r} (z^{\mathrm{T}}x_k y_k^{\mathrm{T}}z + z^{\mathrm{T}}y_k x_k^{\mathrm{T}}z) =$$

$$= z^{\mathsf{T}} x_1 y_1^{\mathsf{T}} z + z^{\mathsf{T}} y_1 x_1^{\mathsf{T}} z = 2(z^{\mathsf{T}} x_1)(y_1^{\mathsf{T}} z).$$

Поскольку M=0, выполняется хотя бы одно из равенств $x_1^{\rm T}z=0$ и $y_1^{\rm T}z=0$.

Предположим теперь, что некоторые из таких векторов z ортогональны только x_1 , а некоторые — только y_1 , так что для некоторого z_1 мы имеем $x_1^{\rm T}z_1=0$, но $y_1^{\rm T}z_1\neq 0$, а для некоторого $z_2-x_1^{\rm T}z_2\neq 0$, но $y_1^{\rm T}z_2=0$. В этом случае вектор $z=z_1+z_2$ был бы ортогонален x_2,\ldots,x_r , но не x_1 или $y_1\colon x_1^{\rm T}z=x_1^{\rm T}z_2\neq 0$ и $y_1^{\rm T}z=y_1^{\rm T}z_1\neq 0$. Поскольку мы только что доказали невозможность этого, необходимо имеем, что все подпространство таких векторов z ортогонально x_1 или y_1 . Или, эквивалентно, что хотя бы один из векторов x_1 и y_1 принадлежит подпространству, натянутому на x_2,\ldots,x_r , откуда и следует утверждение леммы.

<u>Лемма 2.</u> Предположим, что x_2 не является линейной комбинацией x_3, \ldots, x_r . Тогда из

$$\sum_{k=1}^{r} c_k x_k = c_1 x_1 + c_2 x_2 + \sum_{k=3}^{r} c_k x_k = 0,$$

где не все c_k равны нулю, следует

$$-c_2y_1 + c_1y_2 + \sum_{k=3}^{r} c_k' x_k = 0$$

для некоторых c_k' , $k=3,\ldots,r$ (при r=2 дополнительные слагаемые исчезают).

Доказательство. Из изначального предположения следует, что не существует нетривиальной равной нулю линейной комбинации x_2, \ldots, x_r , так что $c_1 \neq 0$, и

$$x_1 = \sum_{k=2}^{r} -\frac{c_k}{c_1} x_k;$$

$$M = \sum_{k=1}^{r} (x_k y_k^{\mathrm{T}} + y_k x_k^{\mathrm{T}}) = \sum_{k=2}^{r} ((x_k (y_k - \frac{c_k}{c_1} y_1)^{\mathrm{T}} + (y_k - \frac{c_k}{c_1} y_1) x_k^{\mathrm{T}}).$$

Пусть z — произвольный вектор, ортогональный x_3, \ldots, x_r : $x_k^{\rm T} z = 0, \, k = 3, \ldots, n$ (просто произвольный вектор при r = 2). Тогда

(5)
$$z^{\mathrm{T}}Mz = z^{\mathrm{T}}x_2(y_2 - \frac{c_2}{c_1}y_1)^{\mathrm{T}}z + z^{\mathrm{T}}(y_2 - \frac{c_2}{c_1}y_1)x_2^{\mathrm{T}}z =$$

$$= \frac{2}{c_1}(z^{\mathrm{T}}x_2)((c_1y_2 - c_2y_1)^{\mathrm{T}}z).$$

Поскольку M=0, выполняется хотя бы одно из равенств $x_2^{\rm T}z=0$ и $(c_1y_2-c_2y_1)^{\rm T}z=0$. Рассмотрим случай $x_2^{\rm T}z=0$. Так как x_2 не является линейной комбинацией x_3,\ldots,x_r , существует последовательность $z_j\to z$, такая что $x_2^{\rm T}z_j\neq 0$, $x_i^{\rm T}z_j=0$ для всех $i=3,\ldots,r,\ j=1,2,\ldots$; следовательно, и в этом случае также $(c_1y_2-c_2y_1)^{\rm T}z=\lim_{j\to\infty}(c_1y_2-c_2y_1)^{\rm T}z_j=0$. Таким образом, все векторы z рассматриваемого вида ортогональны $c_1y_2-c_2y_1$, или, эквивалентно, $c_1y_2-c_2y_1$ принадлежит подпространству, натянутому на x_3,\ldots,x_r , откуда и следует утверждение леммы.

Замечание 1. Вместо $x_1,\ x_2,\ y_1$ и y_2 мы можем рассматривать здесь $x_i,\ x_j,\ y_i$ и y_j для произвольных $i,j=1,\dots,r,$ $i\neq j.$ Более того, для любого k мы можем поменять местами x_k и y_k и применить данную лемму к новому набору векторов. В целом, данная лемма описывает некоторый трансформирующий оператор, который, будучи применен к нетривиальной нулевой

линейной комбинации векторов u_k (каждый из которых является одним из векторов x_k и y_k), заменяет два из них соответствующими векторами v_k (каждый из которых является другим из пары x_k , y_k), переворачивая коэффициенты при них из (c_i, c_j) в $(-c_j, c_i)$, и заменяет все остальные коэффициенты на некоторые новые неизвестные величины — результатом чего является новая нетривиальная нулевая линейная комбинация нового набора векторов.

Замечание 2. Предположение о линейной независимости в лемме 2 по отношению к проблеме (2) может быть ложным для специально подобранных систем или при r>n. Однако в остальных случаях оно выполняется, и далее мы будем считать его истинным в расширенной форме, подразумеваемой предыдущим примечанием.

3. Простейший случай: две пары векторов

Пусть m=2 и (2) имеет решение с $\operatorname{rank} Q_1=\operatorname{rank} Q_2=1$. Обозначим $x_1=q_{11},\ y_1=A_1q_{11};\ x_2=q_{21},\ y_2=A_2q_{21}$. Лемма 1 утверждает, что $c_1x_1+c_2x_2=0$ или $c_1A_1x_1+c_2x_2=0$ для некоторых ненулевых c_1 и c_2 . Лемма 2 дополняет эти уравнения равенствами $-c_2A_1x_1+c_1A_2x_2=0$ и $-c_2x_1+c_1A_2x_2=0$, соответственно. В матричной форме данные варианты могут быть записаны как

(6)
$$\begin{bmatrix} c_1 E & c_2 E \\ -c_2 A_1 & c_1 A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

И

где E — единичная матрица. Для существования нетривиальных решений данных систем необходима вырожденность соответству- 64

ющих матриц коэффициентов:

(8)
$$\det \begin{bmatrix} c_1 E & c_2 E \\ -c_2 A_1 & c_1 A_2 \end{bmatrix} = \det(c_1^2 A_2 + c_2^2 A_1) = 0$$

в первом случае и

(9)
$$\det \begin{bmatrix} c_1 A_1 & c_2 E \\ -c_2 E & c_1 A_2 \end{bmatrix} = \det A_2 \det (c_1^2 A_1 + c_2^2 A_2^{-1}) = 0$$

во втором. Совместное решение (6) и (8), или (7) и (9) дает нам матрицы $Q_1=x_1x_1^{\rm T}$ и $Q_2=x_2x_2^{\rm T}$, из чего вытекает следующий результат.

Теорема 1. Если
$$m = 2$$
 и (2) имеет решение c

 $\operatorname{rank} Q_1 = \operatorname{rank} Q_2 = 1$, так что $Q_1 = x_1 x_1^{\mathrm{T}}$ и $Q_2 = x_2 x_2^{\mathrm{T}}$, данное решение может быть найдено из (6) и (8), или же из (7) и (9), где $c_1 \neq 0$ и $c_2 \neq 0$. Из существования такого решения следует неразрешимость исходной системы (1).

Уравнение (8) эквивалентно требованию вырожденности пучка матриц $\sigma_{\gamma[0;\infty)}[A_1,A_2]$; уравнение (9) — требованию вы-

рожденности пучка матриц $\sigma_{\gamma[0,\infty)}[A_1,A_2^{-1}]$. С учетом этого полученное нами достаточное условие неразрешимости (1) схоже со следующим результатом, приведенным в [11] (теорема 3.1; формулировка незначительно изменена для соответствия контексту).

Теорема 2. Пусть A_1 и $A_2-\partial se$ гурвицевы матрицы в \mathbb{R}^n

такие, что существует решение $P = P^{\mathrm{T}} \geqslant 0$ уравнений Ляпу-

 $^{^3}$ Здесь мы используем обозначения и термины из [11]. Пучком матриц $\sigma_{\gamma[0;\infty)}[A_1,A_2]$ называется семейство матриц вида $L(\gamma)=A_1+\gamma A_2,\,\gamma\in[0;\infty)$. Пучок матриц $\sigma_{\gamma[0;\infty)}[A_1,A_2]$ называется невырожденным, если $L(\gamma)$ невырождена для всех $\gamma\in[0;\infty)$, и вырожденным в противном случае. Необходимым и достаточным условием невырожденности $\sigma_{\gamma[0;\infty)}[A_1,A_2]$ является отсутствие у данной пары матриц неположительных вещественных обобщенных собственных значений.

нова

$$A_i^{\mathrm{T}}P + PA_i = -R_i \leqslant 0, \quad i \in \{1, 2\}$$

для некоторых положительно полуопределенных матриц R_i ранга n-1. Предположим также, что не существует решения $P=P^{\rm T}>0$ системы строгих матричных неравенств Ляпунова

$$A_i^{\mathrm{T}}P + PA_i < 0, \quad i \in \{1, 2\}.$$

Тогда хотя бы один из пучков матриц $\sigma_{\gamma[0;\infty)}[A_1,A_2]$ и $\sigma_{\gamma[0;\infty)}[A_1,A_2^{-1}]$ вырожден.

Данная теорема рассматривает один из типов пограничных конфигураций матриц A_1 и A_2 , когда описываемые ими динамические системы не имеют строгой общей функции Ляпунова, но имеют нестрогую с дополнительными ограничениями на правые части соответствующих уравнений Ляпунова (rank $R_i = n-1$). Отметим без доказательства, что для пограничных конфигураций введение этих дополнительных условий эквивалентно намерению искать решения системы двойственных матричных неравенств именно того типа, которому посвящен данный параграф. Наиболее существенным преимуществом нового результата (теорема 1) является то, что он применим не только к пограничным конфигурациям и, кроме того, является более конструктивным, позволяя непосредственно находить решения двойственной системы ЛМН.

4. Три пары векторов

Рассмотрим случай r=3 и предположим, что никакие Q_i , $i=1,\ldots,m$, не равны нулю. Тогда имеет место одна из следующих конфигураций:

- $\bullet \ m=2, \ {\rm rank} \ Q_1=1, \ {\rm rank} \ Q_2=2; \\ x_1=q_{11}, \ y_1=A_1q_{11}, \ x_2=q_{21}, \ y_2=A_2q_{21}, \\ x_3=q_{22}, \ y_3=A_2q_{22};$
- $\begin{aligned} \bullet & \ m=2, \ \mathrm{rank} \ Q_1=2, \ \mathrm{rank} \ Q_2=1; \\ x_1=q_{11}, \ y_1=A_1q_{11}, \ x_2=q_{12}, \ y_2=A_1q_{12}, \\ x_3=q_{21}, \ y_3=A_2q_{21}; \end{aligned}$

•
$$m = 3$$
, rank $Q_1 = \operatorname{rank} Q_2 = \operatorname{rank} Q_3 = 1$:
 $x_1 = q_{11}, \ y_1 = A_1 q_{11}, \ x_2 = q_{21}, \ y_2 = A_2 q_{21},$
 $x_3 = q_{31}, \ y_3 = A_3 q_{31}$.

Первые два варианта можно рассматривать как частные случаи последнего, в которых две из матриц $A_i,\ i=1,2,3,$ совпадают. В данном параграфе мы остановимся на матрицах Q_i ранга 1, а одну из оставшихся конфигураций рассмотрим далее в качестве примера.

Как и ранее, начнем с двух возможностей, предоставляемых леммой 1:

$$(10) c_1 x_1 + c_2 x_2 + c_3 x_3 = 0$$

или

$$(11) c_1 A_1 x_1 + c_2 x_2 + c_3 x_3 = 0,$$

где не все c_i , i=1,2,3, равны нулю; из второго примечания к лемме 2 следует, что ни одно из c_i не является нулем. Рассмотрим вариант (10). Применение трансформации, описанной в первом примечании к лемме 2, к слагаемым, содержащим x_1 и x_2 , x_2 и x_3 , x_3 и x_1 , дает три следующие линейные комбинации:

$$(12) -c_2 y_1 + c_1 y_2 + c_3' x_3 = 0,$$

$$(13) c_1' x_1 - c_3 y_2 + c_2 y_3 = 0,$$

$$(14) c_3y_1 + c_2'x_2 - c_1y_3 = 0.$$

Возьмем (12) и применим трансформацию снова, на этот раз ко второму и третьему слагаемым (y_2 и x_3):

(15)
$$c_1''y_1 - c_3'x_2 + c_1y_3 = 0.$$

В силу второго примечания к лемме 2 все нулевые линейные комбинации каждого конкретного набора x_k и y_k могут отличаться только скалярным множителем. Сравнивая (15) и (14), получаем $c_3' = c_2'$. Применив трансформацию к y_1 и x_3 в (12), получаем комбинацию

$$-c_3'x_1 + c_2''y_2 - c_2y_3 = 0,$$

которая после сравнения с (13) дает $c_1' = c_3'$. Учитывая, что $y_k = A_k x_k$, мы можем записать (10) и (12)–(14) в матричном

виде как (здесь $c' = c'_1 = c'_2 = c'_3$)

$$\begin{bmatrix} c_1 E & c_2 E & c_3 E \\ -c_2 A_1 & c_1 A_2 & c' E \\ c' E & -c_3 A_2 & c_2 A_3 \\ c_3 A_1 & c' E & -c_1 A_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0.$$

Умножением строк и столбцов матрицы коэффициентов на подходящие скалярные величины эта система может быть далее приведена к виду

$$\begin{bmatrix} E & E & E \\ -\gamma_1 A_1 & \gamma_2 A_2 & E \\ E & -\gamma_2 A_2 & \gamma_3 A_3 \\ \gamma_1 A_1 & E & -\gamma_3 A_3 \end{bmatrix} \begin{bmatrix} c_1 x_1 \\ c_2 x_2 \\ c_3 x_3 \end{bmatrix} = 0,$$

где $\gamma_i=c_0/c_i^2$, $c_0=c_1c_2c_3/c'$. Отметим особо, что все величины γ_i имеют одинаковые знаки. Кроме того, сумма последних трех блочных строк новой матрицы коэффициентов равна первой строке, так что одна из соответствующих линейных комбинаций является излишней. Исключая, например, первую строку, мы получаем матрицу $3n\times 3n$

$$G_{1} = \begin{bmatrix} -\gamma_{1}A_{1} & \gamma_{2}A_{2} & E \\ E & -\gamma_{2}A_{2} & \gamma_{3}A_{3} \\ \gamma_{1}A_{1} & E & -\gamma_{3}A_{3} \end{bmatrix},$$

ядро которой нас и интересует. Таким образом, мы приходим к следующей последовательности шагов.

- 1. Построить матрицу G_1 .
- 2. Найти ненулевые величины $\gamma_i,\,i=1,2,3,$ имеющие одинаковые знаки, такие, что G_1 вырождена. Если решение не найдено, 68

то или двойственная система ЛМН неразрешима или ее решения принадлежат другим конфигурациям (возможно, с другим суммарным рангом r).

- 3. Найти $c_i x_i$ как соответствующие части нетривиального решения $G_1 z = 0$.
- 4. Умножить $c_i x_i$ на $\sqrt{|\gamma_i|}$, получив векторы $x_i' = \mathrm{sign}\, c_i \sqrt{|c_0|} x_i$. Поскольку общие скалярные множители векторов x_i , также как и их знаки, не имеют существенного влияния на соответствующие решения двойственной ЛМН, найденные векторы x_i' являются допустимыми значениями x_i .
- 5. Положить $Q_i = x_i' {x_i'}^{\mathrm{T}};$ подставить полученные матрицы в (2) для проверки.

Второй вариант (11) отличается от первого (10) лишь тем, что векторы x_1 и y_1 или, эквивалентно, E и A_1 в первом столбце матрицы G_1 , меняются ролями:

$$G_2 = \left[\begin{array}{ccc} -\gamma_1 E & \gamma_2 A_2 & E \\ A_1 & -\gamma_2 A_2 & \gamma_3 A_3 \\ \gamma_1 E & E & -\gamma_3 A_3 \end{array} \right].$$

Таким образом, мы доказали следующую теорему.

Теорема 3. Eсли m=3 и (2) имеет решение c

 $\operatorname{rank} Q_1 = \operatorname{rank} Q_2 = \operatorname{rank} Q_3 = 1$, так что $Q_1 = x_1 x_1^{\mathrm{T}}$, $Q_2 = x_2 x_2^{\mathrm{T}}$ и $Q_3 = x_3 x_3^{\mathrm{T}}$, данное решение может быть найдено с помощью построения матриц G_1 и/или G_2 и применения к ним указанной выше последовательности шагов. Из существования такого решения следует неразрешимость исходной системы (1).

Замечание 3. Другие конфигурации Q_i из числа указанных в начале параграфа можно свести к данной путем рассмотрения троек матриц (A_1,A_2,A_2) или (A_1,A_1,A_2) вместо (A_1,A_2,A_3) .

5. Пример

Рассмотрим систему неравенств Ляпунова (1) со следующими устойчивыми матрицами:

$$A_1 = \begin{bmatrix} -0.485 & 0.881 & 0.302 \\ 0.309 & -0.805 & 0.008 \\ -0.880 & -0.332 & 0.072 \end{bmatrix},$$

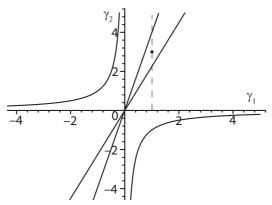
$$A_2 = \begin{bmatrix} -0.836 & 0.373 & 0.693 \\ -0.448 & -0.362 & -0.399 \\ -0.039 & 0.160 & -0.326 \end{bmatrix}.$$

Ни один из пучков матриц $[A_1,A_2]$ и $[A_1,A_2^{-1}]$ не является вырожденным, так что критерий, приведенный в параграфе 3, здесь неприменим. Покажем, однако, что существует решение двойственного уравнения (2) с $\operatorname{rank} Q_1 = 2$ и $\operatorname{rank} Q_2 = 1$. В соответствии с параграфом 4, формируем матрицу G_2 из тройки (A_1,A_1,A_2) вместо (A_1,A_2,A_3) :

$$G_{2} = \begin{bmatrix} -\gamma_{1}E & \gamma_{2}A_{1} & E \\ A_{1} & -\gamma_{2}A_{1} & \gamma_{3}A_{2} \\ \gamma_{1}E & E & -\gamma_{3}A_{2} \end{bmatrix} = \begin{bmatrix} -\gamma_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0,326\gamma_{3} \end{bmatrix}.$$

Определитель $\det G_2$ является многочленом шестой степени от трех переменных γ_i , кубическим относительно каждой переменной по отдельности. Уравнение $\det G_2=0$ имеет бесконечно много решений, образующих поверхность в пространстве величин γ_i (как отмечалось ранее, нас интересуют только решения в октантах, где все γ_i имеют одинаковые знаки). Мы можем произвольным образом выбрать две из них, например, γ_1 и γ_2 , из γ_1 0

множества, образованного проекцией данной поверхности на соответствующую координатную плоскость, а затем решить уравнение $\det G_2=0$, чтобы найти третью. Границы такой проекции могут быть найдены построением неявно заданной поверхности $\det G_2=0$ или, более формально, анализом дискриминанта $d(\gamma_1,\gamma_2)$ полинома $\det G_2$ относительно γ_3 (рис. 1).



Puc. 1. График $d(\gamma_1, \gamma_2) = 0$

В данном случае допустимые значения γ_1 и γ_2 находятся внутри двойного сектора в первом и третьем квадрантах. Взяв произвольную точку в этом секторе, например, $\gamma_1=1,\,\gamma_2=3,\,$ и решив $\det G_2=0$ относительно γ_3 , получаем два положительных корня: 3,827 и 10,544 (рис. 2). Возьмем первый из них, подставим $\gamma=[1\,\,3\,\,3,827]$ в G_2 и найдем любое нетривиальное решение $G_2z=0$:

$$z = [0.299 \ 0.428 \ -0.132 \ 0.014 \ -0.042 \ \dots]$$

$$0,704 - 0,206 \ 0,295 - 0,289]^{\mathrm{T}}$$
.

Извлекая векторы x_i , получаем

$$q_{11} = x_1 = \sqrt{|\gamma_1|} \left[z_1 \ z_2 \ z_3 \right]^{\mathrm{T}} = \left[0.299 \ 0.428 \ -0.132 \right]^{\mathrm{T}},$$

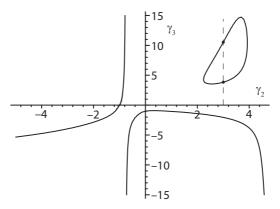


Рис. 2. Сечение $\det G_2 = 0$ плоскостью $\gamma_1 = 1$

$$q_{12} = x_2 = \sqrt{|\gamma_2|} [z_4 \ z_5 \ z_6]^{\mathrm{T}} = [0.024 \ -0.073 \ 1.219]^{\mathrm{T}},$$

 $q_{21} = x_3 = \sqrt{|\gamma_3|} [z_7 \ z_8 \ z_9]^{\mathrm{T}} = [-0.403 \ 0.577 \ -0.565]^{\mathrm{T}}.$

Нахождение $Q_1=q_{11}q_{11}^{\rm T}+q_{12}q_{12}^{\rm T}$ и $Q_2=q_{21}q_{21}^{\rm T}$ и подстановка результата в (2) показывает, что полученные матрицы действительно являются решениями двойственной системы ЛМН, и, таким образом, исходная система (1) для заданных матриц A_1 и A_2 неразрешима.

6. Заключение

В данной работе показано, как аналитически находить решения системы ЛМН, двойственной к системе неравенств Ляпунова, с суммарным рангом $r=\sum_{i=1}^m \operatorname{rank} Q_i$, не превышающим 3. Случай r=2 дает более конструктивную версию известного ранее критерия; случай r=3 является существенно новым результатом, представляющим собой следующий по сложности этап установления разрешимости системы неравенств Ляпунова. Те же базовые леммы и общий подход, продемонстрированный в параграфе 4, могут быть применены и к поиску решений с более высокими значениями суммарного ранга. Конечно, в этом случае сложность анализируемых полиномов будет существенно выше,

что делает важным структурный анализ матриц коэффициентов и их определителей. Это особенно актуально, когда m невелико, а индивидуальные ранги матриц Q_i превышают единицу.

Литература

- 1. АЛЕКСАНДРОВ А. Ю., ПЛАТОНОВ А. В. *Об абсолютной устойчивости одного класса нелинейных систем с переключениями* // Автоматика и телемеханика. 2008. №7. С. 3–18.
- 2. ПАКШИН П. В., ПОЗДЯЕВ В. В. *Критерий существования общей квадратичной функции Ляпунова множества линейных систем второго порядка* // Известия РАН. Теория и системы управления. 2005. №4. С. 22–27.
- 3. ПАКШИН П. В., ПОЗДЯЕВ В. В. Условия разрешимости системы линейных матричных неравенств второго порядка // Известия РАН. Теория и системы управления. 2006. №5. С. 5–14.
- 4. BOYD S., EL GHAOUI L., FERON E., BALAKRISHNAN V. *Linear matrix inequalities in system and control theory.* SIAM, 1994.
- 5. KAMENETSKII V.A., PYATNITSKII YE.S. An iterative method of Lyapunov function construction for differential inclusion // System and Control Letters. 1987. V. 8. P. 445–451.
- 6. OOBA T., FUNAHASHI Y. *Two Conditions Concerning Common Quadratic Lyapunov Functions for Linear Systems* // IEEE Trans. Automat. Contr. 1997. V. 42, №5. P. 719–721.
- 7. OOBA T., FUNAHASHI Y. *On a Common Quadratic Lyapunov Function for Widely Distant Systems* // IEEE Trans. Automat. Contr. 1997. V. 42, №12. P. 1697–1699.
- 8. PAKSHIN P. V. Robust Stability and Stabilization of the Family of Jumping Stochastic Systems // Nonlinear Analysis, Theory, Methods and Applications. 1997. V. 30. P. 2855–2866.

- 9. SHORTEN R. N., MASON O., O'CAIRBRE F., CURRAN P. *A unifying framework for the circle criterion and other quadratic stability criteria* // Proceedings of the European Control Conference. Cambridge, 2003. P. 1–6 (CD-ROM).
- 10. SHORTEN R.N., NARENDRA K. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems // International Journal of Adaptive Control and Signal Processing. 2002. V. 16. P. 709–728.
- 11. SHORTEN R.N., NARENDRA K.S., MASON O. *A result on common quadratic Lyapunov functions* // IEEE Trans. Automat. Control. 2003. V. 48, №1. P. 110–113.

ON AN ANALYTICAL SOLUTION OF SYSTEMS OF MATRIX INEQUALITIES DUAL TO LYAPUNOV INEQUALITY SYSTEMS

Vladimir Pozdyaev, Arzamas Polytechnical Institute of Nizhny Novgorod State Technical University, Arzamas, Cand.Sc., assistant professor (vpozdyayev@gmail.ru).

Abstract: Systems of Lyapunov inequalities of arbitrary order are considered. A way to analytically find solutions of dual matrix inequality systems is presented. Some particular cases are considered in detail, providing sufficient conditions of original Lyapunov inequality systems' infeasibility.

Keywords: linear systems, matrix inequalities, Lyapunov inequalities.

Статья представлена к публикации членом редакционной коллегии Б. Т. Поляком.