УДК 681.5.011 + 519.853.4 ББК 32.965 + 22.18

АТОМНАЯ ОПТИМИЗАЦИЯ, ЧАСТЬ 2: МНОГОМЕРНЫЕ ЗАДАЧИ И ПОЛИНОМИАЛЬНЫЕ МАТРИЧНЫЕ НЕРАВЕНСТВА¹

Поздяев В. В.²

(Арзамасский политехнический институт (филиал) Нижегородского государственного технического университета им. Р. Е. Алексеева, Арзамас)

Рассмотрены многомерные задачи оптимизации с полиномиальной целевой функцией и ограничениями в виде полиномиальных матричных неравенств. Представлена трансформация основанного на теории моментов метода их решения, позволяющая существенно снизить его вычислительную сложность, сохранив способность решать задачи интересующего нас класса.

Ключевые слова: нелинейное программирование, матричные неравенства, полиномиальные неравенства, теория моментов.

Введение

Рассмотрим задачу нахождения глобальных экстремумов полиномиальной целевой функции на множестве, заданном полиномиальными неравенствами (ПН):

(1) $f^* = \min_x f(x),$ $g_i(x) \ge 0,$ $x \in \mathbb{R}^n, \quad i = 1, \dots, m,$

¹ Работа выполнена при финансовой поддержке РФФИ, грант №12-08-31440.

² Владимир Васильевич Поздяев, кандидат физико-математических наук, доцент (vpozdyayev@gmail.com).

или полиномиальными матричными неравенствами (ПМН):

(2)

$$f^* = \min f(x),$$

$$G_i(x) \ge 0,$$

$$x \in \mathbb{R}^n, \quad i = 1, \dots, m$$

где f(x) и $g_i(x)$ — (не обязательно выпуклые) полиномы; $G_i(x)$ — матрицы, элементы которых являются полиномами от x, а знак неравенства в (2) понимается как требование положительной полуопределенности. Далее данные задачи мы будем называть соответственно задачами ПН и ПМН.

В первой части данной статьи [1] рассматривался предназначенный для решения таких задач метод глобальной оптимизации [4, 5, 7], фундамент которого образуют теория разложения полиномов в сумму квадратов и двойственная ей теория моментов. Данный метод позволяет найти все глобальные экстремумы, используя для этого сведение исходной задачи к иерархии систем линейных матричных неравенств (так называемых ЛМН-релаксаций), решение которых представляет существенно меньшую трудность. Тем не менее, применимость данного метода ограничена двумя факторами:

- комбинаторным взрывом количества неизвестных и размера матриц в ЛМН-релаксациях;
- ухудшением обусловленности составляющих ЛМНрелаксации матриц и последующим снижением точности расчетов по мере рассмотрения последовательности ЛМН-релаксаций.

Обе проблемы вызваны тем, что в ЛМН-релаксациях пространством поиска является пространство не переменных исходной задачи, а их моментов соответствующих порядков. Для уменьшения влияния данных проблем на результат авторы метода применяют вспомогательные техники, такие как представление исходной задачи в форме с как можно меньшим количеством неизвестных; уменьшение количества моментов-переменных в ЛМНрелаксациях за счет использования линейных связей между ними (если постановка задачи содержит зависимости такого рода); масштабирование переменных таким образом, чтобы искомые экстремумы удовлетворяли условию $||x^*|| \leq 1$.

Существуют иные алгоритмы, основанные на подходе аналогичного вида (построение иерархии аппроксимаций исходной задачи и решение их более или менее стандартными методами). Возникающие при этом структуры в общем случае адаптированы к классу решаемых задач и могут иметь сниженную вычислительную сложность за счет усиления консерватизма аппроксимаций; см., например, сравнение методов решения задач бинарного программирования в [9]. Кроме того, модификация отдельных этапов метода [7] (в первую очередь методики построения аппроксимаций) может позволить решать задачи самого разного вида, в том числе имеющего неочевидное отношение к задачам ПМН (общая структура метода при этом остается неизменной); см., например, [3, 6, 8].

В [1] был предложен альтернативный подход, основанный на исключении из процедуры решения пространства моментов. Это достигается за счет дальнейшей трансформации ЛМНрелаксаций с целью возвращения задачи в (расширенное) исходное пространство поиска. Также была разработана вычислительная схема, позволяющая с минимальными изменениями применить к новой задаче метод внутренней точки в прямой форме, который может использоваться для решения ЛМН-релаксаций. Данные вопросы детально рассматривались для одномерных задач оптимизации в форме ПН.

Данная статья посвящена дальнейшему развитию техники преобразования пространства поиска применительно к многомерным задачам оптимизации и полиномиальным матричным неравенствам. Раздел 1 содержит сведения о базовом методе, относящиеся к такого рода задачам. В разделе 2 приведены результаты из [1], необходимые для дальнейших построений. Основной раздел 3 распространяет данные результаты на задачи ПМН вида, характерного для теории управления. В разделе 4 приведены примеры применения полученных результатов.

1. Базовый метод

Основные положения метода решения задач ПН (1), опубликованного в [7], были изложены в предыдущей части статьи. Приведем необходимые нам в дальнейшем элементы.

Пусть $b_r(x), x \in \mathbb{R}^n$, — вектор, состоящий из одночленов, образующих базис пространства многочленов порядка не выше r:

$$b_r(x) = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n & x_1^2 & x_1 x_2 & \dots \\ & \dots & x_1 x_n & x_2 x_3 & \dots & x_n^2 & \dots & x_1^r & \dots & x_n^r \end{bmatrix}^{\mathrm{T}},$$

а $s_n(r) = C_{n+r}^r = \frac{(n+r)!}{n!r!}$ — его размерность. Каждому одночлену из $b_r(x)$ поставим в соответствие вектор $\alpha \in \mathbb{N}_0^n$, $\sum_i \alpha_i \leqslant r$ (далее будем записывать как $\alpha \leqslant r$), показателей степеней x_1 , x_2, \ldots, x_n ; обозначим $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}$. Для произвольного вектора $p \in \mathbb{R}^{s_n(r)}$, ассоциированного с пространством моментов x степени не выше r, будем индексировать его элементы двумя взаимозаменяемыми способами: по номеру элемента и по вектору показателей степеней; порядок элементов будем считать соответствующим структуре $b_r(x)$. Таким образом, $p = [p_i]_{1\leqslant i\leqslant s_n(r)} = [p_{\alpha}]_{\alpha\in\mathbb{N}_0^n}, \alpha\leqslant r$, в том числе $p_1 = p_{[0,0,\ldots,0]}$, $p_2 = p_{[1,0,\ldots,0]}$ и т. д. Аналогичным образом будем индексировать строки и столбцы матриц там, где это применимо.

Рассмотрим некоторую (неизвестную) меру μ и соответствующий ей вектор моментов y:

$$y = \int b_r(x) \,\mathrm{d}\mu.$$

Пусть $d_i = \lceil \frac{1}{2} \deg g_i(x) \rceil$, а k удовлетворяет ограничениям $2k \ge \deg f(x), k \ge d_i$. Пусть f_α — коэффициенты f(x) в базисе $b_{2k}(x)$, так что

$$\int f(x) \,\mathrm{d}\mu = \int \sum_{\alpha \leqslant 2k} f_{\alpha} x^{\alpha} \,\mathrm{d}\mu = \sum_{\alpha \leqslant 2k} f_{\alpha} y_{\alpha}.$$

98

ЛМН-релаксацией (1) будем называть задачу

(3)

$$f^* = \min_{y} \sum_{\alpha \leqslant 2k} f_{\alpha} y_{\alpha},$$

$$M_k(y) \ge 0,$$

$$M_{k-d_i}(g_i, y) \ge 0, \quad i = 1, \dots, m$$

$$y_{[0,0,\dots,0]} = 1,$$

где матрица моментов $M_k(y)$ и локализующие матрицы $M_{k-d_i}(g_i, y)$ конструируются исходя из соотношений

(4)
$$M_k(y) = \int b_k(x) b_k(x)^{\mathrm{T}} \,\mathrm{d}\mu,$$

(5)
$$M_{k-d}(g,y) = \int b_{k-d}(x)b_{k-d}(x)^{\mathrm{T}}g(x)\,\mathrm{d}\mu.$$

В [7] (теорема 4.2) показано, что, с учетом некоторых непринципиальных ограничений, при $k \to \infty$ величина экстремума ЛМН-релаксации стремится к величине экстремума исходной задачи ПН. Более того, как правило, уже при конечных (и относительно небольших) значениях k данные величины становятся равны, а вектор моментов решения задачи ПН является решением соответствующей ЛМН-релаксации. Достаточным условием достижения такого значения k является

$$r \equiv \operatorname{rank} M_k(y^*) = \operatorname{rank} M_{k-d}(y^*),$$

где y^* — решение ЛМН-релаксации, а $d = \max_i d_i$. Если оно выполняется, то y^* представляет собой вектор моментов *r*-атомной меры³, атомы которой x^{*j} , j = 1, ..., r, соответствуют глобальным минимумам (1). Данные атомы могут быть извлечены из y^* путем решения системы полиномиальных уравнений (в которую для *r*-атомных мер превращается (4)) с помощью алгоритма, представленного в [4].

 $^{^{3}} N$ -атомная мера — мера, носитель которой является множеством из N точек (атомов).

Одним из способов решения задач ПМН (2) является преобразование их к форме ПН с последующим применением описанного метода. Но более эффективным подходом является построение ЛМН-релаксаций непосредственно для исходной матричной формы неравенств способом, описанным в [5]. А именно: вместо (5) будем конструировать локализующие матрицы, исходя из следующего соотношения:

$$M_{k-d}(G, y) = \int \left(b_{k-d}(x) b_{k-d}(x)^{\mathrm{T}} \right) \otimes G(x) \, \mathrm{d}\mu.$$

Например, для n = 2, k - d = 1 и

$$G(x) = \left[\begin{array}{cc} x_1 & 2\\ 2 & x_2 \end{array} \right]$$

локализующая матрица имеет вид

$$M_2(G, y) = \int A \,\mathrm{d}\mu = B,$$

A =	$\begin{bmatrix} x_1 \end{bmatrix}$	2	x_{1}^{2}	$2x_1$	$x_1 x_2$	$2x_2$ -	1
	2	x_2	$2x_1$	$x_1 x_2$	$2x_2$	x_{2}^{2}	
	x_1^2	$2x_1$	x_{1}^{3}	$2x_1^2$	$x_1^2 x_2$	$2x_1x_2$	
	$2x_1$	x_1x_2	$2x_{1}^{2}$	$x_1^2 x_2$	$2x_1x_2$	$x_1 x_2^2$,
	x_1x_2	$2x_2$	$x_1^2 x_2$	$2x_1x_2$	$x_1 x_2^2$	$2x_2^2$	
	$2x_2$	x_2^2	$2x_1x_2$	$x_1 x_2^2$	$2x_{2}^{2}$	x_2^3 _	
B =	$y_{[1,0]}$	$2y_{[0,0]}$	$ y_{[2,0]} $	$2y_{[1,0]}$	$y_{[1,1]}$	$2y_{[0,1]}$	٦
	$2y_{[0,0]}$	$y_{[0,1]}$	$2y_{[1,0]}$	$y_{[1,1]}$	$2y_{[0,1]}$	$y_{[0,2]}$	
	$y_{[2,0]}$	$2y_{[1,0]}$	$y_{[3,0]}$	$2y_{[2,0]}$	$y_{[2,1]}$	$2y_{[1,1]}$	
	$2y_{[1,0]}$	$y_{[1,1]}$	$2y_{[2,0]}$	$y_{[2,1]}$	$2y_{[1,1]}$	$y_{[1,2]}$	
	$y_{[1,1]}$	$2y_{[0,1]}$	$y_{[2,1]}$	$2y_{[1,1]}$	$y_{[1,2]}$	$2y_{[0,2]}$	
	$2y_{[0,1]}$	$y_{[0,2]}$	$ 2y_{[1,1]}$	$y_{[1,2]}$	$ 2y_{[0,2]} $	$y_{[0,3]}$]

2. Результаты части 1

Результаты, полученные в предыдущей части, были посвящены двум вопросам: определению эквивалентного направления 100

поиска в методе внутренней точки при трансформации пространства поиска; применению полученного результата к одномерным задачам ПН. Приведем подробности в форме, наиболее подходящей для дальнейших построений.

2.1. ЭКВИВАЛЕНТНОЕ НАПРАВЛЕНИЕ ПОИСКА Пусть задача ПМН

 $f^* = \min_x f(x),$ (6) $F_i(x) \ge 0,$ $\nu_x^{\mathrm{T}} x = 1,$ $x \in \mathbb{R}^n, \quad i = 1, \dots, m,$ может быть получена из задачи ЛМН $f^* = \min_x a^{\mathrm{T}} u$

(7)

$$\begin{aligned}
f &= \min_{y} c \ y, \\
\bar{F}_{i}(y) \ge 0, \\
\nu_{y}^{\mathrm{T}} y = 1, \\
y \in \mathbb{R}^{n}, \quad i = 1, \dots, m,
\end{aligned}$$

с помощью замены⁴ (трансформации пространства поиска) y = y(x).

Далее мы будем рассматривать алгоритм решения (7) на основе метода внутренней точки в прямой форме с ньютоновским направлением поиска, представляющий собой серию подзадач минимизации целевых функций вида

$$\bar{f}^{(i)}(y) = c^{\mathrm{T}}y - \mu^{(i)} \sum_{j=1}^{m} \log \det \bar{F}_j(y),$$

где $\{\mu^{(i)}\}$ — монотонно невозрастающая сходящаяся к 0 вещественная последовательность. Каждая подзадача решается на

⁴ Одним из условий результатов [1] было отличие от 0 якобиана y(x) внутри допустимой области. Здесь мы опускаем это условие, поскольку финальные результаты целенаправленно конструируются так, чтобы не содержать упоминаний о данной трансформации.

ограниченном неравенствами $\bar{F}_i(y) \ge 0$ отрезке прямой, проходящей через $y^{(i)}$ и имеющей предписываемое методом Ньютона направление, которое с учетом ограничения в виде равенства имеет вид

(8)
$$\Delta y(y^{(i)}) = H_y^{-} \left(-g_y + \frac{\nu_y^{\mathrm{T}} H_y^{-} g_y}{\nu_y^{\mathrm{T}} H_y^{-} \nu_y} \nu_y \right),$$

где H_y^- — произвольная 5 обобщенная обратная к H_y матрица;

$$g_y = \nabla_y \bar{f}^{(i)}(y^{(i)}) = c - \mu^{(i)} \sum_{j=1}^m \nabla_y \log \det \bar{F}_j(y^{(i)}),$$
$$H_y = \nabla_y^2 \bar{f}^{(i)}(y^{(i)}) = -\mu^{(i)} \sum_{j=1}^m \nabla_y^2 \log \det \bar{F}_j(y^{(i)}),$$

а элементы слагаемых под знаками сумм могут быть найдены как

$$(\nabla_y \log \det \bar{F}(y))_i = \operatorname{tr}\left(\bar{F}^{-1}(y)\left(\frac{\mathrm{d}}{\mathrm{d}y_i}\bar{F}(y)\right)\right),$$
$$(\tilde{\nabla}_y^2 \log \det \bar{F}(y))_{ij} = -\operatorname{tr}\left(\bar{F}^{-1}(y)\left(\frac{\mathrm{d}}{\mathrm{d}y_i}\bar{F}(y)\right)\right)$$
$$\bar{F}^{-1}(y)\left(\frac{\mathrm{d}}{\mathrm{d}y_j}\bar{F}(y)\right)\right).$$

Как показано в предыдущей части, такой алгоритм естественным образом переносится в пространство поиска задачи (6). При этом вспомогательные целевые функции имеют вид

(9)
$$f^{(i)}(x) = f(x) - \mu^{(i)} \sum_{j=1}^{m} \log \det F_j(x),$$

а направление поиска, эквивалентное в малом направлению (8), равно (см. теоремы 1, 2, 3 в [1] и комментарии к ним)

(10)
$$\Delta x(x^{(i)}) = \tilde{H}_x^- \left(-g_x + \frac{\nu_x^{\mathrm{T}} \tilde{H}_x^- g_x}{\nu_x^{\mathrm{T}} \tilde{H}_x^- \nu_x} \nu_x \right).$$

⁵ Свободно выбирается из множества обобщенных обратных матриц при первом упоминании. Все дальнейшие вхождения этой матрицы имеют то же значение.

Здесь \tilde{H}_x^- — произвольная обобщенная обратная к \tilde{H}_x матрица, а градиент g_x и модифицированный гессиан \tilde{H}_x находятся по формулам

$$g_x = \nabla_x f^{(i)}(x^{(i)}) = \nabla_x f(x^{(i)}) - \mu^{(i)} \sum_{j=1}^m \nabla_x \log \det F_j(x^{(i)}),$$
$$\tilde{H}_x = \tilde{\nabla}_x^2 f^{(i)}(x^{(i)}) = -\mu^{(i)} \sum_{j=1}^m \tilde{\nabla}_x^2 \log \det F_j(x^{(i)}),$$

где $\tilde{\nabla}_x^2 = \nabla_x^2 - \sum_i (\nabla_x^2 y_i) \frac{\mathrm{d}}{\mathrm{d}y_i}$; слагаемые под знаками сумм могут быть вычислены следующим образом:

(11)
$$(\nabla_x \log \det F(x))_i = \operatorname{tr} \left(F^{-1}(x) \left(\frac{\mathrm{d}}{\mathrm{d}x_i} F(x) \right) \right),$$
$$(\tilde{\nabla}_x^2 \log \det F(x))_{ij} = -\operatorname{tr} \left(F^{-1}(x) \left(\frac{\mathrm{d}}{\mathrm{d}x_i} F(x) \right) \right)$$
$$F^{-1}(x) \left(\frac{\mathrm{d}}{\mathrm{d}x_j} F(x) \right)$$

Мы видим, что (10) не зависит от вида трансформации y = y(x) и компонентов задачи (7). Более того, даже если не существует линеаризующей трансформации указанного вида⁶, полученный результат сохраняет свою применимость, хотя и теряет теоретические гарантии нахождения глобального минимума итоговым алгоритмом. Особо отметим сохранение при этом важного для метода Ньютона свойства $\tilde{H}_x \ge 0$, а также возможность использования в трансформации задачи (3) значений k и d_i , не ограничиваемых более порядками полиномов исходной задачи ПН/ПМН.

2.2. ОДНОМЕРНЫЕ ЗАДАЧИ

Указанные результаты были применены к задачам ПН с n = 1. В качестве трансформации пространства поиска был взят переход из пространства атомов в пространство моментов y = y(z).

⁶ Как видно из раздела 1, для задач ПН/ПМН линеаризующая трансформация найдется всегда, но минимально допустимая размерность у при этом может быть больше п. Если же в задаче фигурируют неполиномиальные функции, такой трансформации с вектором у конечной размерности может и не быть.

Здесь z — вектор в пространстве атомов $\mathbb{R}^{r \times (n+1)} = \mathbb{R}^{2r}$, имеющий структуру

$$z = \begin{bmatrix} x_1 & x_2 & \dots & x_r & p_1 & p_2 & \dots & p_r \end{bmatrix}^{\mathrm{T}},$$

где $x_i \in \mathbb{R}-$ атомы; $p_i \in (0;1)-$ их веса; вектор моментов yимеет размерность $s_1(2k)+1=2k+2$ и состоит из элементов вида

$$y_j = y_{[j-1]} = \sum_{i=1}^r p_i x_i^{j-1}, \quad j = 1, 2, \dots, 2k+2.$$

Старший, (2k + 1)-й момент не входит ни в (3), ни в Δy , и нужен исключительно для равенства размерностей y и z, которое обеспечивается дополнительным соотношением r = k + 1.

Интерпретируя ЛМН-релаксацию рассматриваемой задачи как форму (7), мы можем записать эквивалентную задачу вида (6) без использования вектора моментов следующим образом: (12)

$$f^* = \min_{z} \sum_{j=1}^{r} p_j f(x_j),$$

$$F_0(z) = \sum_{j=1}^{r} p_j \left(b_k(x_j) b_k(x_j)^{\mathrm{T}} \right) \ge 0,$$

$$F_i(z) = \sum_{j=1}^{r} p_j \left(b_{k-d_i}(x_j) b_{k-d_i}(x_j)^{\mathrm{T}} \right) g_i(x_j) \ge 0, \quad i = 1, \dots, m,$$

$$\nu_z^{\mathrm{T}} z = \sum_{j=1}^{r} p_j = 1.$$

Данная форма задачи напрямую подходит для решения модифицированным методом внутренней точки с вычислением эквивалентного ньютоновского направления поиска $\Delta z(z^{(i)})$ по формуле (10).

3. Многомерные задачи

Задачи ПН/ПМН в общем случае являются NP-трудными [2], и предлагаемый способ их трансформации данную проблему не решает. С другой стороны, благодаря смене пространства поиска, вычислительная сложность процедуры решения задачи определяется теперь не столько формальными характеристиками последней, сколько фактической сложностью структуры области поиска и целевой функции. Например, даже если задача заведомо является выпуклой, но имеет относительно большое количество неизвестных и задействует полиномы не слишком малого порядка, оригинальный метод вынужденно столкнется с вышеупомянутым комбинаторным взрывом размера ЛМН-релаксаций. С помощью же новой схемы мы сможем сконструировать алгоритм с единственным атомом, реализующий локальную оптимизацию и требующий существенно меньших вычислительных ресурсов.

Далее мы будем ориентироваться на задачи родом из теории управления, зачастую изначально представляемые в виде ПМН и имеющие невысокий порядок полиномов, не слишком малое количество неизвестных, а также область поиска с относительно несложным характером невыпуклости (см. пример в разделе 4.2)⁷. Последнее условие подразумевает, что невыпуклость как таковая не приводит к наличию большого количества ложных локальных минимумов, сложному рельефу вспомогательных целевых функций и т. п. Таким образом, мы можем рассматривать невыпуклость задачи не как бинарный фактор, вынуждаюций нас при его наличии в лучшем случае искать альтернативные формулировки задачи с более приемлемыми количественными характеристиками, а в худшем — смиряться с катастрофическим ростом объема вычислений — как неявную характеристику,

⁷ Примером задачи с патологическим характером невыпуклости, который мы не рассматриваем, может служить любая задача оптимизации на множестве битовых векторов (такие задачи представимы в виде ПН, поскольку условие $x_i \in \{0; 1\}$ эквивалентно системе $x_i \ge 0$; $x_i \le 1$; $x_i(x_i - 1) \ge 0$). В этом случае область поиска предсталяет собой дискретное множество из 2^n точек.

под которую подбираются параметры алгоритма поиска решения (в первую очередь k и r).

Построим алгоритм поиска экстремума, основанный на описанной выше схеме и удовлетворяющий следующим требованиям:

- он должен быть совместим как с задачами ПН, так и с задачами ПМН;
- 2) он должен избегать эффекта комбинаторного взрыва;
- он должен позволять более тонко контролировать объем вычислений, в частности, выбирать необходимое количество атомов в зависимости от ожидаемого характера невыпуклости задачи и количества локальных экстремумов.

Комбинаторный взрыв является неизбежным результатом повышения порядка ЛМН-релаксации в оригинальном методе, и попытка конструирования эквивалентной трансформированной задачи дала бы в этом случае аналогичный эффект. Поэтому дальнейшие построения основаны на ЛМН-релаксациях с минимальными нетривиальными значениями k и d_i . Такие конфигурации, соответствующие первым двум требованиям, рассмотрены в разделе 3.1.

В разделе 3.2 представлено обобщение вычислительной схемы, позволяющее дополнительно уменьшать количество атомов до любого нужного значения, включая 1 (в соответствии с требованием 3).

Раздел 3.3 описывает способ компенсации консерватизма вычислительной схемы, вызванного отказом от использования ЛМН-релаксаций высоких порядков.

3.1. БАЗОВАЯ КОНФИГУРАЦИЯ

По аналогии с одномерными задачами рассмотрим пространство атомов, состоящее из векторов вида

(13) $z = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} & x_{21} & \dots & x_{rn} & p_1 & p_2 & \dots & p_r \end{bmatrix} =$ $= \begin{bmatrix} x_1^{\mathrm{T}} & x_2^{\mathrm{T}} & \dots & x_r^{\mathrm{T}} & p_1 & p_2 & \dots & p_r \end{bmatrix}^{\mathrm{T}},$ где $x_i \in \mathbb{R}^n$ – атомы, $p_i \in (0; 1)$ – их веса. Соответствующий вектор моментов имеет вид $y = y(z) = \sum_{i=1}^r p_i b_k(x_i).$

Подставив y = y(z) в релаксацию (3) задачи (2), получаем аналог (12), отличающийся структурой векторов z (имеющего указанный выше вид), ν_z (который теперь состоит из rn нулей и r единиц), $b_k(x)$, $b_{k-d_i}(x)$, а также матриц $F_i(z)$:

$$F_i(z) = \sum_{j=1}^r p_j \left(b_{k-d_i}(x_j) b_{k-d_i}(x_j)^{\mathrm{T}} \right) \otimes G_i(x_j).$$

Базовая версия предлагаемого далее подхода использует минимальное нетривиальное значение k = 1 в сочетании с минимально возможным количеством атомов, дающим невырожденную матрицу $F_0(z)$: $r = s_n(k) = n+1$. Величины d_i при этом могут принимать значения 0 и 1. Определим, какие из данных значений целесообразно использовать. Отметим, что $F_0(z)$ можно формально считать разновидностью $F_i(z)$ с $d_0 = 0$ и $g_0(x) = 1$.

Утверждение 1. Пусть k = 1, $r = s_n(k) = n + 1$, $u \ G(x) \in \mathbb{R}^{l \times l}$. Определитель матрицы

$$F(z) = \sum_{i=1}^{r} p_i \left(b_{k-d}(x_i) b_{k-d}(x_i)^{\mathrm{T}} \right) \otimes G(x_i)$$

равен

(14)
$$\det F(z) = \left(\prod_{i=1}^{r} p_i^l \det G(x_i)\right) (\det V)^{2l}$$

 $npu \ d = 0 \ u$

$$\det F(z) = \det \sum_{i=1}^{r} p_i G(x_i)$$

при d = 1. Здесь $V \in \mathbb{R}^{(n+1) \times r}$ — матрица, *i*-й столбец которой равен $b_1(x_i)$ (*n*-мерная матрица Вандермонда порядка 1 для векторов x_i):

$$V = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_{11} & x_{21} & \dots & x_{r1} \\ x_{12} & x_{22} & \dots & x_{r2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{rn} \end{bmatrix}$$

Доказательство. Формула для d = 1 следует из $b_0(x) = [1]$. Пусть теперь d = 0; $H_i = H_i^{\mathrm{T}}$ – произвольный квадратный корень из $p_i G(x_i)$; $W = W^{\mathrm{T}} = \mathrm{diag}(H_1, H_2, \ldots, H_r)$; $I_l \in \mathbb{R}^{l \times l}$ – единичная матрица. Тогда

$$F(z) = \sum_{i=1}^{r} p_i \left(b_{k-d}(x_i) b_{k-d}(x_i)^{\mathrm{T}} \right) \otimes G(x_i) =$$

=
$$\sum_{i=1}^{r} \left(b_{k-d}(x_i) \otimes H_i \right) \left(b_{k-d}(x_i) \otimes H_i \right)^{\mathrm{T}} =$$

=
$$\left((V \otimes I_l) W \right) \left((V \otimes I_l) W \right)^{\mathrm{T}} =$$

=
$$\left(V \otimes I_l \right) (WW^{\mathrm{T}}) (V \otimes I_l)^{\mathrm{T}},$$

так что (поскольку $V \otimes I_l$ и WW^{T} – квадратные матрицы)

$$\det F(z) = \det(WW^{\mathrm{T}})(\det(V \otimes I_l))^2 =$$

= $(\det \operatorname{diag}(p_1G(x_1), p_2G(x_2), \dots, p_rG(x_r))) (\det V)^{2l},$

откуда получаем доказываемую формулу.

Мы видим, что при использовании $d_i = 0, i = 1, 2, ..., m$, необходимым условием сохранения положительной определенности $F_i(z)$ в процессе решения задачи методом внутренней точки является положительная определенность каждой из матриц $G_i(x_j)$ по отдельности. Данное требование лишает атомы x_j возможности покидать допустимую область — что является одним 108

из ключевых аспектов алгоритма, особенно при исследовании областей поиска с несколькими компонентами связности. По этой причине использование таких значений d_i представляется нецелесообразным. Далее мы сохраняем $d_0 = 0$, но полагаем все остальные d_i равными 1. Задача (6) тогда приобретает вид

(15)

$$f^* = \min_{z} \sum_{j=1}^{r} p_j f(x_j),$$

$$F_0(z) = V \operatorname{diag}(p_1, p_2, \dots, p_r) V^{\mathrm{T}} \ge 0,$$

$$F_i(z) = \sum_{j=1}^{r} p_j G_i(x_j) \ge 0, \quad i = 1, \dots, m,$$

$$\nu_z^{\mathrm{T}} z = \sum_{j=1}^{r} p_j = 1.$$

3.2. РЕДУКЦИЯ

Представленная в предыдущем разделе схема имеет жесткое ограничение на количество атомов: $r = s_n(1) = n + 1$. Между тем, в реальных задачах ПМН данное число может быть довольно велико. Покажем, что выведенные ранее формулы допускают обобщение на случай r < n + 1.

Единственным элементом (15), несовместимым с изложенной схемой при r < n + 1, является неравенство $F_0(z) \ge 0$ (поскольку матрица $F_0(z)$ в этом случае вырождена). Возвращаясь к интерпретации log det $F_0(z)$ как потенциального поля, отталкивающего атомы друг от друга (см. [1], раздел 4), отметим, что при r = 1 данное неравенство теряет смысл и его можно исключить. Пусть теперь r > 1. Определим воздействие на атомы аналогичного поля, действующего в проходящей через x_1, x_2, \ldots, x_r (r-1)-мерной гиперплоскости **X**. Далее будем предполагать, что конфигурация атомов x_1, x_2, \ldots, x_r не является вырожденной: они не лежат на гиперплоскости меньшей размерности.

Введем на указанной гиперплоскости ортонормированный базис, и пусть $M_0 \in \mathbb{R}^{n \times (r-1)}$ — матрица, столбцы которой являются элементами данного базиса. Эта матрица задает линейный

оператор, ставящий векторам $x \in \mathbf{X}$ в соответствие их координаты в новом базисе: $\bar{x} = M_0^{\mathrm{T}} x$ (без ограничения общности будем считать началом координат в \mathbf{X} решение системы $M_0^{\mathrm{T}} x = 0$, $x \in \mathbf{X}$). Пусть $\bar{x}_i = M_0^{\mathrm{T}} x_i$, $i = 1, 2, \ldots, r$. Обозначим также $W = \operatorname{diag}(p_1, p_2, \ldots, p_r)$, так что $F_0(z)$ из (15) будет иметь вид $F_0(z) = VWV^{\mathrm{T}}$.

Примем в качестве эквивалента $F_0(z)$ на ${f X}$ матрицу

$$\bar{F}_0(z) = \bar{V}W\bar{V}^{\rm T} = M_0^{\prime {\rm T}}VWV^{\rm T}M_0^{\prime} = M_0^{\prime {\rm T}}F_0(z)M_0^{\prime},$$

где

$$\bar{V} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \bar{x}_{11} & \bar{x}_{21} & \dots & \bar{x}_{r1} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{x}_{1,r-1} & \bar{x}_{2,r-1} & \dots & \bar{x}_{r,r-1} \end{bmatrix},$$
$$M'_0 = \operatorname{diag}([1], M_0) \in \mathbb{R}^{(n+1) \times r}.$$

Тогда

$$\det \bar{F}_0(z) = \det(M_0^{\prime \mathrm{T}} V) \det(W) \det(V^{\mathrm{T}} M_0^{\prime}) =$$
$$= \det(W) \det(V^{\mathrm{T}} M_0^{\prime} M_0^{\prime \mathrm{T}} V) = \left(\prod_{i=1}^r p_i\right) \det(V^{\mathrm{T}} P^{\prime} V),$$

где $P' = \text{diag}([1], P); P = M_0 M_0^{\mathrm{T}}$ — матрица проекции на пространство столбцов M_0 , которую можно найти, построив M_0 , или же как $P = M(M^{\mathrm{T}}M)^{-1}M^{\mathrm{T}}$, где столбцы $M \in \mathbb{R}^{n \times (r-1)}$ образуют произвольный базис **X**: например, $x_2 - x_1, x_3 - x_1, \ldots, x_r - x_1$. Отметим, что матрицы $V, M_0'^{\mathrm{T}}V$ и P'V имеют полный ранг по столбцам.

Выражение $det(V^{T}P'V)$ можно упростить. Для r = 1 данный определитель равен 1. Если r > 1, пусть

$$R = \begin{bmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \in \mathbb{R}^{r \times r}.$$

110

Тогда

$$det(V^{\mathrm{T}}P'V) = det(R^{\mathrm{T}}) det(V^{\mathrm{T}}P'^{\mathrm{T}}P'V) det(R) = = det((P'VR)^{\mathrm{T}}(P'VR)).$$

Несложно видеть, что Px_1 линейно зависит от $P(x_2 - x_1) = x_2 - x_1, \ldots, P(x_r - x_1) = x_r - x_1$, а следовательно, существует такая нижняя треугольная матрица L с единичной диагональю (описывающая вычитание из первого столбца P'VR остальных с соответствующими коэффициентами), что, домножив на нее справа матрицу

$$P'VR = \begin{bmatrix} 1 & 0 & \dots & 0 \\ Px_1 & x_2 - x_1 & \dots & x_r - x_1 \end{bmatrix},$$

мы получим

$$P'VRL = \text{diag}([1], M),$$

 $M = [x_2 - x_1 | x_3 - x_1 | \dots | x_r - x_1]$

так что det $((P'VR)^{T}(P'VR)) = det ((P'VRL)^{T}(P'VRL)) = det (M^{T}M)$. Финальная форма является грамианом системы векторов $x_2 - x_1, x_3 - x_1, \ldots, x_r - x_1$, и, таким образом, $det(V^{T}P'V)$ представляет собой квадрат (r-1)-мерного объема параллелотопа, построенного на данных образующих (что согласуется с (14), поскольку при r = n + 1 определитель det V равен ориентированному объему параллелотопа с образующими того же вида). Таким образом,

(16)
$$\det \bar{F}_0(z) = \left(\prod_{i=1}^r p_i\right) \det \left(M^{\mathrm{T}} M\right).$$

Найдем теперь компоненты $\nabla_z \log \det \bar{F}_0(z)$ и $\tilde{\nabla}_z^2 \log \det \bar{F}_0(z)$. Будем считать **X**, M_0 и M константами (так что $\frac{1}{dz}M_0(z) = 0$ и $\frac{1}{dz}M(z) = 0$): это позволит избежать зависимости модифицированного гессиана $\tilde{\nabla}_z^2 \log \det \bar{F}_0(z)$ от выбора базиса **X** (напомним, что данный гессиан определяется не только инвариантной по отношению к базису функцией $\log \det \bar{F}_0(z)$, но и видом самой матрицы $\bar{F}_0(z)$). Мы можем 111

это сделать, поскольку нашей целью на данном этапе является определение воздействия барьерной функции, индуцированной неравенством $F_0(z) \ge 0$ на **X**, на конкретную (текущую) конфигурацию атомов.

Теорема 1. Пусть P', V, W, $F_0(z)$ и $\bar{F}_0(z)$ – матрицы указанного выше вида, $U = (P'V)^-$ – произвольная обобщенная обратная к P'V матрица, и $G(z) = P'U^{\mathrm{T}}W^{-1}UP'$. Тогда

$$\begin{aligned} (\nabla_z \log \det \bar{F}_0(z))_i &= \operatorname{tr} \left(G(z) \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) \right); \\ (\tilde{\nabla}_z^2 \log \det \bar{F}_0(z))_{ij} &= -\operatorname{tr} \left(G(z) \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) G(z) \left(\frac{\mathrm{d}}{\mathrm{d}z_j} F_0(z) \right) \right). \end{aligned}$$

Доказательство. Пусть M_0 — матрица указанного выше вида. Поскольку $\bar{F}_0(z)$ — невырожденная матрица, существует единственная обратная к ней матрица $\bar{G}(z)$, которая может быть найдена как $\bar{G}(z) = M_0^{\rm T} U^{\rm T} W^{-1} U M_0$. Это можно видеть, подставив данное выражение, а также $\bar{F}_0(z) = M_0'^{\rm T} V W V^{\rm T} M_0'$, в $\bar{F}_0(z) \bar{G}(z) \bar{F}_0(z)$ и упростив результат с учетом равенств $M_0' M_0'^{\rm T} = P' = P'^{\rm T}$ и $(P'V)^- (P'V) = I$ (в силу полноранговости P'V по столбцам). Результатом данных действий является выражение, идентичное $\bar{F}_0(z)$, а следовательно, $\bar{G}(z)$.

Согласно (11), имеем:

$$\begin{aligned} (\nabla_z \log \det \bar{F}_0(z))_i &= \\ &= \operatorname{tr} \left(\bar{F}_0^{-1}(z) \left(\frac{\mathrm{d}}{\mathrm{d}z_i} \bar{F}_0(z) \right) \right) = \\ &= \operatorname{tr} \left(M_0'^{\mathrm{T}} U^{\mathrm{T}} W^{-1} U M_0' M_0'^{\mathrm{T}} \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) M_0' \right) = \\ &= \operatorname{tr} \left(M_0' M_0'^{\mathrm{T}} U^{\mathrm{T}} W^{-1} U M_0' M_0'^{\mathrm{T}} \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) \right) = \\ &= \operatorname{tr} \left(P' U^{\mathrm{T}} W^{-1} U P' \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) \right) = \\ &= \operatorname{tr} \left(G(z) \left(\frac{\mathrm{d}}{\mathrm{d}z_i} F_0(z) \right) \right). \end{aligned}$$

Аналогично для $(\tilde{
abla}_z^2 \log \det \bar{F}_0(z))_{ij}.$

Таким образом, при r < n + 1 задача (15) в основном сохраняет свой вид. Исключением является лишь неравенство $F_0(z) \ge 0$, заменяющееся на $\bar{F}_0(z) \ge 0$; соответствующие ему компоненты барьерной функции, ее градиента и обобщенного гессиана находятся согласно (16) и теореме 1.

3.3. РЕПАТРИАЦИЯ РЕШЕНИЙ

Если порядок релаксации k недостаточно велик, исходный метод [5] находит консервативную нижнюю границу значения экстремума. Наиболее разрушительным проявлением аналогичного эффекта в трансформированной задаче является возможность получения финальной конфигурации атомов, ни один из которых не принадлежит допустимой области.⁸

Чтобы избежать данной проблемы, добавим в трансформированную задачу серию неравенств вида $p_jG_i(x_j) + \lambda I \ge 0$:

$$f^* = \min_{z} \sum_{j=1}^{r} p_j f(x_j),$$

$$\bar{F}_0(z) = M_0^{\prime T} V \operatorname{diag}(p_1, p_2, \dots, p_r) V^T M_0' \ge 0,$$

(17)
$$F_i(z) = \sum_{j=1}^{r} p_j G_i(x_j) \ge 0, \quad i = 1, \dots, m,$$

$$\bar{F}_{ij}(z) = p_j G_i(x_j) + \lambda I \ge 0, \quad i = 1, \dots, m, \quad j = 1, \dots, r,$$

$$\nu_z^T z = \sum_{j=1}^{r} p_j = 1,$$

где $\lambda \ge 0$ — параметр, значение которого изначально выбирается достаточно большим для выполнения неравенств $\bar{F}_{ij}(z^{(0)}) \ge 0$ и далее систематически уменьшается по мере нахождения промежуточных приближений $z^{(i)}$ модифицированным методом внут-

⁸ Например, возможна ситуация, когда в задаче ПН с m > 1 часть атомов удовлетворяет только неравенству $g_1(x) \ge 0$, другая часть только неравенству $g_2(x) \ge 0$ и т. д., так что ни один атом не удовлетворяет всем ограничениям одновременно — но при этом неравенства $F_i(z) = \sum_{j=1}^r p_j g_i(x_j) \ge 0$ выполняются.

ренней точки.9

Соответствующие новым неравенствам компоненты барьерной функции $\log \det \bar{F}_{ij}(z)$ вычисляются напрямую; компоненты градиента и модифицированного гессиана — с помощью (11): (18)

$$\begin{aligned} (\nabla_z \log \det \bar{F}_{ij}(z))_{x_{jk}} &= p_j \operatorname{tr} \left(\bar{F}_{ij}^{-1}(z) \left(\frac{\mathrm{d}}{\mathrm{d}x_{jk}} G_i(x_j) \right) \right), \\ (\nabla_z \log \det \bar{F}_{ij}(z))_{p_j} &= \operatorname{tr} \left(\bar{F}_{ij}^{-1}(z) G_i(x_j) \right), \\ (\tilde{\nabla}_z^2 \log \det \bar{F}_{ij}(z))_{x_{jk}x_{jl}} &= -p_j^2 \operatorname{tr} \left(\bar{F}_{ij}^{-1}(z) \left(\frac{\mathrm{d}}{\mathrm{d}x_{jk}} G_i(x_j) \right) \right) \\ &\quad \bar{F}_{ij}^{-1}(z) \left(\frac{\mathrm{d}}{\mathrm{d}x_{jl}} G_i(x_j) \right) \right), \\ (\tilde{\nabla}_z^2 \log \det \bar{F}_{ij}(z))_{x_{jk}p_j} &= -p_j \operatorname{tr} \left(\bar{F}_{ij}^{-1}(z) \left(\frac{\mathrm{d}}{\mathrm{d}x_{jk}} G_i(x_j) \right) \right) \\ &\quad \bar{F}_{ij}^{-1}(z) G_i(x_j) \right), \end{aligned}$$

 $(\tilde{\nabla}_z^2 \log \det \bar{F}_{ij}(z))_{p_j p_j} = -\operatorname{tr}\left(\bar{F}_{ij}^{-1}(z)G_i(x_j)\bar{F}_{ij}^{-1}(z)G_i(x_j)\right);$

здесь x_{jk} и p_j в качестве нижних индексов обозначают элементы градиента и гессиана, соответствующие данным переменным; все неуказанные элементы равны 0. Отметим, что неравенства $\bar{F}_{ij}(z) \ge 0$ добавлены в систему искусственно и не имеют отношения к линейным релаксациям; поэтому использование здесь именно модифицированного гессиана $\tilde{\nabla}_z^2$ обусловлено не столько намерением построить эквивалентную трансформированную задачу, сколько гарантией положительной полуопределенности соответствующей компоненты \tilde{H}_z .

⁹ Оптимальная стратегия формирования последовательности значений λ является предметом отдельного исследования.

4. Примеры

4.1. ЗАДАЧА ПН

Рассмотрим задачу, иллюстрирующую работу нового алгоритма с несвязными областями поиска для m = 1, n = 2:

$$f^* = \min_x f(x) = \min_x (x_2 + 0, 1)^2,$$

$$g_1(x) = 1 - 2x_1 - 2(x_2^2 - 1)^2 \ge 0.$$

На рис. 1 показана область поиска $g_1(x) \ge 0$ и отмечены локальные экстремумы f(x) в данной области, из которых нижний является глобальным.

Решим данную задачу, используя конфигурации с r = 1, r = 2 и r = 3. Выберем случайные начальные позиции атомов в окрестности точки (-0,5;1). Будем делать серию из 15 шагов с $\mu = 1$, а после нее — 5 серий по 5 шагов, уменьшая μ в 4 раза в каждой новой серии. Положим также $\lambda = 1000$ (так что компоненты барьерных функций, соответствующие неравенствам $\bar{F}_{ij}(z) \ge 0$, не будут оказывать заметного влияния на решение).

Для r = 1, как и в одномерном случае, действие алгоритма эквивалентно локальному поиску с логарифмическими барьерными функциями и ньютоновским выбором направления с использованием модифицированного гессиана (рис. 2).

Для r = 2 и r = 3 отдельные атомы получают возможность переходить из одной компоненты связности в другую за счет временного уменьшения веса, позволяющего матрицам $F_i(z)$ оставаться положительно определенными (рис. 3 и рис. 4). Это позволяет одному из атомов найти глобальный минимум; положение остальных атомов впоследствии может стать произвольным, поскольку их веса стремятся к 0.

Дальнейшее увеличение количества атомов в рамках изложенного подхода для данной задачи невозможно, поскольку мы рассматриваем только конфигурации с $r \leq n + 1$.

4.2. ЗАДАЧА ПМН

В качестве более реалистичного примера рассмотрим задачу HE1 из библиотеки COMPl_e ib [10]: нахождение стабилизирующей обратной связи по выходу u = Ky для системы

$$\dot{x} = Ax + Bu,$$
$$y = Cx,$$

где матрицы A, B и C заданы; размерности вектора состояния, управления и выхода равны 4, 2 и 1. Множество решений $K = [k_1 \ k_2]^{\mathrm{T}}$ показано на рис. 5.

Модифицируем задачу с целью ее усложнения:

- с помощью замены переменных применим аффинное преобразование к плоскости К для усиления невыпуклости множества решений (что эквивалентно соответствующему изменению матриц A, B и C);
- дополнительно потребуем минимизации k₁² + k₂²; начальные приближения в алгоритме будем генерировать в окрестности допустимой точки, близкой к ложному экстремуму.

Новое множество решений $K = [k_1 \ k_2]^{\mathrm{T}}$ показано на рис. 6. Также на графике отмечены локальные экстремумы целевой функции с учетом ограничений. Правый экстремум является глобальным.

В отличие от [5], где данная задача также рассматривалась (в исходной постановке), мы можем напрямую воспользоваться ее представлением в форме ПМН: $(A + BKC)^TP + P(A + BKC) < 0$, где $K \in \mathbb{R}^{2 \times 1}$ и $P \in \mathbb{R}^{4 \times 4}$, $P = P^T > 0$, — неизвестные матрицы. Добавив в систему ограничения на неизвестные величины, приходим к следующей задаче ПМН с 12 скалярными неизвестными и 4 неравенствами (левая часть каждого — матрица 4×4),

Рис. 6. Решения измененной задачи

из которых одно является билинейным:

$$f^* = \min_{P,K} k_1^2 + k_2^2,$$

$$G_1(P,K) = -(A + BKC)^T P - P(A + BKC) > 0,$$

$$G_2(P,K) = P - 10^{-2}I > 0,$$

$$G_3(P,K) = 10^2 I - P > 0,$$

$$G_4(P,K) = \text{diag}(1 + k_1, 1 - k_1, 1 + k_2, 1 - k_2) > 0.$$

Начальные приближения будем формировать из $K_0 = [-0,9; 0]^{\mathrm{T}}$ и случайных P_0 , находящихся в окрестности решения уравнения $(A + BK_0C)^{\mathrm{T}}P + P(A + BK_0C) = -I$. Воспользуемся последовательностью значений μ , аналогичной предыдущему примеру, но через каждые 5 итераций будем делать вспомогательную короткую серию шагов, уменьшая на ней по мере возможности величину λ . Начальное значение последней $-\lambda = 10$; в процессе работы алгоритма оно уменьшается до величины порядка 10^{-3} .

Результаты для r = 1, r = 2 и r = 3 приведены на рис. 7, 8 и 9:

- при r = 1 алгоритм находит ближайший локальный экстремум;
- при r = 2 результат, как правило, тот же. Дополнительный атом теряет вес раньше, чем обнаружит правильный экстре-
- 118

мум, после чего его траектория становится малопредсказуемой;

 при r = 3 алгоритм достаточно стабильно локализует оба экстремума. Атом в глобальном экстремуме быстро набирает вес, вследствие чего точность нахождения последнего выше, чем точность нахождения ложного минимума.

Таким образом, атомная оптимизация позволяет получать адекватные результаты при решении практических задач с использованием относительно небольших конфигураций атомов.

Рис. 7. График K для r = 1

Рис. 8. Графики K и p для r = 2

Рис. 9. Графики K и p для r = 3

5. Заключение

Мы рассмотрели применение техники атомной оптимизации к невыпуклым задачам на базе полиномиальных матричных неравенств и продемонстрировали следующие ее характеристики.

- Полиномиальная зависимость размера трансформированной задачи от размера исходной задачи ПМ/ПМН и количества атомов позволяет новому алгоритму иметь в целом существенно более низкую вычислительную сложность по сравнению с оригинальным алгоритмом на базе метода моментов за счет отказа от максимально полного исследования области поиска.
- В задачах ПМН интересующего нас вида (охарактеризованного в разделе 3) она позволяет получать адекватный результат при использовании конфигураций атомов относительно небольшого размера. Кроме того, ее одноатомный вариант может использоваться в задачах локальной оптимизации.
- Отметим также, что полученная вычислительная схема применима без изменений в том числе и к задачам, содержащим неполиномиальные функции и неравенства (при

выполнении некоторых базовых требований: в первую очередь, их дифференцируемости и гладкости).

Дальнейшие потенциально перспективные направления исследований включают: поиск оптимального представления и реализации изложенной вычислительной схемы; отработка полученных алгоритмов на существенно нелинейных и невыпуклых задачах теории управления; построение аналогичных вычислительных схем на базе более сложных методов внутренней точки.

Литература

- ПОЗДЯЕВ В.В. Атомная оптимизация, часть 1: трансформация пространства поиска и одномерные задачи // Управление большими системами. – 2011. – №36. – С. 39–80.
- BLONDEL V., TSITSIKLIS J. NP-hardness of some linear control design problems // SIAM J. on Control and Optimization. – 1997. – Vol. 35, №6. – P. 2118–2127.
- S., HENRION D., JACQUEMARD 3. GALEANI A., ZACCARIAN L. Design of Marx generators structured eigenvalue assignment: LAASas a CNRS 2013. Research Report. _ URL: http://homepages.laas.fr/henrion/Papers/marx.pdf (дата обращения: 15.05.13).
- 4. HENRION D., LASSERRE J.-B. *Detecting global optimality and extracting solutions in GloptiPoly* // Positive polynomials in control. 2005. P. 1–18.
- HENRION D., LASSERRE J.-B. Convergent relaxations of polynomial matrix inequalities and static output feedback // IEEE Trans. Automatic Control. – 2006. – Vol. 51, №2. – P. 192–202.
- KORDA M., HENRION D., JONES C.N. Inner approximations of the region of attraction for polynomial dynamical systems: LAAS-CNRS Research Report. – 2012. – URL: http://homepages.laas.fr/henrion/Papers/roainner.pdf (дата обращения: 01.12.12).

- LASSERRE J.-B. Global optimization with polynomials and the problem of moments // SIAM J. on Optimization. – 2001. – Vol. 11, №3. – P. 796–817.
- LASSERRE J.-B. A new look at nonnegativity on closed sets and polynomial optimization // SIAM J. on Optimization. – 2011. – Vol. 21. – P. 864–885.
- LAURENT M. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0-1 programming // Mathematics of Operations Research. – 2001. – Vol. 28. – P. 470–496.
- LEIBFRITZ F. COMPl_eib: COnstraint Matrix-optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems. – 2004. – URL: http://www.compleib.de/ (дата обращения: 01.12.12).

ATOMIC OPTIMIZATION, PART 2: MULTIDIMENSIONAL PROBLEMS AND POLYNOMIAL MATRIX INEQUALITIES

Vladimir Pozdyayev, Arzamas Polytechnical Institute of R. E. Alekseev Nizhny Novgorod State Technical University, Arzamas, Cand.Sc., associate professor (vpozdyayev@gmail.com).

Abstract: We investigate multidimensional optimization problems with polynomial objective function and polynomial matrix inequality constraints and suggest a transformation of the moment-theory-based solution technique. It allows reducing significantly the computational complexity while keeping the ability to solve the problems of the class under consideration.

Keywords: nonlinear programming, matrix inequalities, polynomial inequalities, moment theory.

Статья представлена к публикации членом редакционной коллегии П.С.Щербаковым Поступила в редакцию 09.01.2013. Опубликована 31.05.2013.