УДК 007:159.955 ББК 30.17

ЗАДАЧИ, МОДЕЛИ И АЛГОРИТМЫ СИСТЕМЫ УПРАВЛЕНИЯ ПРОИЗВОДСТВОМ ЛИСТОВОГО СТЕКЛА

Кушников В. А.¹.

(Институт проблем точной механики и управления РАН, Саратов)

Шербаков М. А.²

(Саратовский государственный технический университет им. Гагарина Ю.А., Саратов)

В статье рассмотрены задачи, модели, алгоритмы и комплексы программ, позволяющие осуществить рациональное управление производством листового стекла по векторному критерию, характеризующему ущерб от нарушений качества выпускаемой продукции и вероятность возникновения аварии, приводящей к полной остановке флоат-процесса.

Ключевые слова: производство листового стекла, качество выпускаемой продукции, векторный критерий, математические модели, алгоритмы, комплексы программ.

1. Введение

Одной из важных задач, стоящих перед отечественными стекольными предприятиями, является сокращение потерь из-за выпуска некачественной продукции и уменьшение числа аварий при производстве стекла. Так, на крупном стекольном предприятии доля брака в выпускаемой продукции может превысить 60 тыс. м² листового стекла в год [4, 13]. В промышленно развитых странах решение этой проблемы во многом осуществляется

Вадим Алексеевич Кушников, доктор технических наук, профессор (kushnikoff@yandex.ru).

² Максим Александрович Щербаков, аспирант (max-yta@mail.ru). 198

за счет внедрения новых, более эффективных технологий на базе современной вычислительной техники.

Как объект управления производство листового стекла принадлежит к классу сложных человеко-машинных систем, процесс функционирования которых характеризуется большим числом качественных и количественных параметров, наличием сложных причинно-следственных связей, инерционностью каналов управления, значительной ролью оперативнодиспетчерского персонала при обеспечении высокого качества выпускаемой продукции и безаварийности производственного процесса (рис. 1).



Рис. 1. Структурная схема процесса формования листового стекла как объекта управления ($\vec{u}(t)$ – управляющие воздействия; OC – обратная связь; $\vec{\xi}(t)$ – возмущения)

Общие принципы управления сложными человекомашинными системами рассмотрены в трудах зарубежных и отечественных ученых, таких как Э. Фейгенбаум, Н.П. Бусленко, Д.Л. Поспелов, О.И. Ларичев, В.А. Ириков, А.Ф. Резчиков, Р.И. Макаров и др. [2, 3, 6, 10]. На основе этих исследований были разработаны и хорошо зарекомендовали себя на практике различные системы автоматизации сложных производственных объектов, в том числе и оборудование для автоматизированного управления флоат-процессом, например, такое как системы ГРАСмикро, «Алиса», «Димиконт», Metronex и др. [4, 5, 7, 8, 12–14].

Вместе с тем, большинство проблемно-ориентированных систем управления производством листового стекла, используемых на отечественных и зарубежных предприятиях стекольной промышленности, не позволяют минимизировать ущерб от выпуска некачественной продукции, а также вероятность возникновения аварии, приводящей к полной остановке флоатпроцесса.

Указанное обстоятельство обуславливает необходимость разработки и внедрения нового математического обеспечения проблемно-ориентированных систем управления производством листового стекла, что позволит преодолеть указанные трудности. Данные соображения определяют актуальность, экономическую целесообразность и практическую значимость темы этой статьи, посвященной разработке новых задач, моделей и алгоритмов управления флоат-процессом по векторному критерию, характеризующему ущерб от выпуска некачественной продукции и вероятность возникновения аварии, приводящей к полной остановки производства.

2. Постановка задачи

Задача рационального управления производством листового стекла по сформулированному выше векторному критерию в общем виде имеет следующую формулировку.

Необходимо разработать алгоритм нахождения управляющих воздействий $\vec{u}^*(t) \in \{\vec{U}\}$, минимизирующих на заданном временном интервале $[t_n, t_k]$ при любых допустимых значениях

вектора состояний среды $\vec{x}(t) \in \{\vec{X}\}$ критерий эффективности $\vec{K} = (K_1, K_2)$:

$$K_1 = \int_{t_H}^{t_K} D(t, \vec{x}, \vec{x}', \vec{u}, \vec{u}') dt; \quad K_2 = \int_{t_H}^{t_K} P(t, \vec{x}, \vec{x}', \vec{u}, \vec{u}') dt$$

при ограничениях:

$$F_k\left(t,\vec{x},\vec{u}\right){\ge}0,\quad k{=}1,...,n_1\,,\ \forall K_1\in D_P:K_1=K_{\min}$$
и граничных условиях

$$F_k^{(t_H)}(\vec{x}, \vec{u}) = 0, \ k = n_2 + 1, ..., n_3,$$

$$F_k^{(t_k)}(\vec{x},\vec{u}) = 0, k = n_3 + 1, ..., n_4,$$

обусловленных спецификой функционирования объекта управления.

Здесь K_1 , K_2 — скалярные целевые функции векторного критерия; D — ущерб от снижения качества выпускаемой продукции; P — вероятность возникновения аварии, приводящей к полной остановке флоат-процесса; D_P — подмножество области изменения целевой функции K_1 , в каждой точке которого она достигает минимального значения K_{min} ; $\vec{x}'(t)$, $\vec{u}'(t)$ — первые производные векторов состояния среды и управляющих воздействий соответственно; $\{\vec{U}\}$, $\{\vec{X}\}$ — множества допустимых значений векторов $\vec{x}(t)$, $\vec{u}(t)$ соответственно; t — время;

3. Общий подход к решению задачи

 $(n_1, ..., n_4)$ – известные коэффициенты.

Задача (1) относится к классу многокритериальных на условный экстремум. Ее решению должно предшествовать установление отношения порядка между составляющими критерия эффективности $\vec{K}=(K_1,\,K_2)$.

По сведениям ОАО «Саратовстройстекло» потери от нарушений качества выпускаемой продукции, как правило, меньше ущерба от аварий, приводящих к полной остановке флоатпроцесса [14]. Так, в среднем за год только простои линии тер-

мического формования, вызванные обрывом ленты стекла, приводят к потерям более 40 тыс. м^2 стекла [5, 14]. Ввиду того что разрабатываемое математическое обеспечение ориентировано на внедрение в первую очередь в структурных подразделениях данного акционерного общества, свертка критериев была выполнена с присвоением абсолютного приоритета задаче оптимизации скалярного критерия K_2 .

При внедрении данной задачи на других предприятиях стекольной промышленности порядок свертки критерия эффективности $\vec{K} = \left(K_1, K_2\right)$ должен определяться, исходя из анализа причин возникновения брака листового стекла на конкретном производстве.

Последующая оптимизация каждого скалярного критерия осуществлялась с использованием метода кусочно-линейной аппроксимации, часто применяемого при решении данного класса задач.

Решение задач оптимизации скалярных критериев K_1 , K_2 связано со значительными трудностями ввиду высокой размерности и сложности математической модели объекта управления, необходимости учета как количественных, так и качественных параметров, влияющих на величину критериев эффективности, и др. В связи с этим обстоятельством был разработан эвристический метод решения данных задач, основные этапы которого рассмотрены ниже.

4. Математические модели и алгоритм решения задачи оптимизации критерия K2

При разработке математической модели данной задачи были сделаны допущения, вытекающие из анализа особенностей функционирования объекта управления: полная остановка флоат-процесса возможна только при одновременной остановке его этапов a_1, \ldots, a_3 , так как процесс резки, раскроя и пакетирования листового стекла не прерывается даже при возникновении тяжелой аварии (рис. 2); предусмотрено одновременное выполнение ремонта всего отказавшего оборудования; случайные процессы отказов и восстановлений обладают марковским свойством.

Управление техническими системами и технологическими процессами

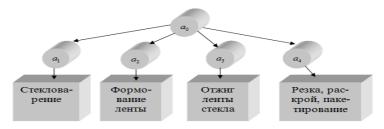


Рис. 2. Основные этапы процесса производства листового стекла (a_0 – флоат-процесс; a_1 , ..., a_4 – основные этапы флоат-процесса)

На основании сделанных допущений был сформирован граф основных состояний флоат-процесса G(u, e), см. рис. 3.

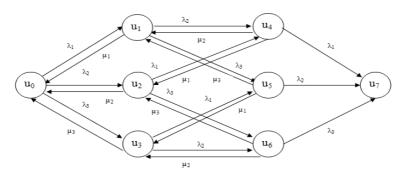


Рис. 3. Граф основных состояний флоат-процесса G(u, e), учитываемых при определении вероятности возникновения тяжелой аварии (u_0 – полная работоспособность;

 u_1 – прекращение процесса стекловарения; u_2 – прекращение формования ленты; u_3 – прекращение отжига ленты; u_4 – прекращение этапов a_1, a_4 ; u_5 – прекращение этапов a_1, a_3 ;

 u_4 — прекращение этапов u_1, u_4 , u_5 — прекращение этапов u_1, u_3 , u_6 — прекращение этапов a_2, a_3 ; u_7 — полная остановка флоатпроцесса из-за возникновения аварии; $\lambda_i, \mu_i, i = 1, 2, 3$ — интенсивности отказа и восстановления оборудования на i-м этапе
процесса, соответственно)

С учетом вышеизложенного задача минимизации вероятности возникновения аварии, приводящей к полной остановке

флоат-процесса, заключается в выборе такой интенсивности восстановления отказов $\mu_i^*(t) = i = 1, 2, 3$, которая позволит на заданном временном интервале $[t_n, t_\kappa]$ минимизировать критерий

(1)
$$K_2 = \int_{t_H}^{t_K} P_7(P_0, P_1, P_2, P_3, \lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \mu_3, t) dt \rightarrow \min$$

при следующих отграничениях:

$$(2) \quad \frac{dP_0}{dt} = -(\lambda_1 + \lambda_2 + \lambda_3)P_0(t) + \mu_1 P_1(t) + \mu_2 P_2(t) + \mu_3 P_3(t);$$

$$\frac{dP_1}{dt} = \lambda_1 P_0(t) - (\mu_1 + \lambda_1 + \lambda_2)P_1(t) + \mu_2 P_4(t) + \mu_3 P_5(t);$$

$$\frac{dP_2}{dt} = \lambda_2 P_0(t) - (\mu_2 + \lambda_1 + \lambda_3)P_2(t) + \mu_1 P_4(t) + \mu_3 P_6(t);$$

$$\frac{dP_3}{dt} = \lambda_3 P_0(t) - (\mu_3 + \lambda_1 + \lambda_2)P_3(t) + \mu_1 P_5(t) + \mu_2 P_6(t);$$

$$\frac{dP_4}{dt} = \lambda_2 P_1(t) + \lambda_1 P_2(t) - (\mu_2 + \mu_1 + \lambda_3)P_4(t);$$

$$\frac{dP_5}{dt} = \lambda_3 P_1(t) + \lambda_1 P_3(t) - (\mu_3 + \mu_1 + \lambda_2)P_5(t);$$

$$\frac{dP_6}{dt} = \lambda_2 P_3(t) + \lambda_3 P_2(t) - (\mu_2 + \mu_3 + \lambda_1)P_6(t);$$

$$\frac{dP_7}{dt} = \lambda_3 P_4(t) + \lambda_2 P_5(t) + \lambda_1 P_6(t),$$

где P_i , i = 0, ..., 7, — вероятность перехода объекта управления в состояние u_i , i = 0, ..., 7.

Ограничения формирует система уравнений Колмогорова—Чепмена (3), принадлежащих к классу линейных дифференциальных уравнений с постоянными коэффициентами; она построена по известным правилам на основе графа G(u, e), см. рис. 3. Решение данной системы осуществлено аналитически, в результате была построена следующая зависимость:

$$\begin{split} P_7(t) &= \frac{1}{\mu_2 \mu_3 \mu_1} \Big(\mu_2 \mu_3 \mu_1 e^{-(\mu_2 + \mu_1 + \mu_3 + \lambda_1 - \lambda_2 + \lambda_3)t} C8 - \\ &- \mu_1 \mu_2 \lambda_3 e^{-(\mu_1 + \mu_2 + \lambda_1 + \lambda_2)t} C6 - \mu_3 \mu_1 \lambda_2 e^{-(\mu_3 + \mu_1 + \lambda_1 + \lambda_3)t} C7 - \\ &- \mu_2 \mu_3 \lambda_1 e^{-(\mu_3 + \mu_2 + \lambda_2 + \lambda_3)t} C5 + \mu_1 \lambda_2 \lambda_3 e^{-(\mu_1 + \lambda_1)t} C3 + \\ &- \lambda_1 \mu_3 \lambda_2 e^{-(\mu_3 - \lambda_3)t} C2 + \lambda_1 \lambda_3 \mu_2 e^{-(\lambda_2 + \mu_2)t} C4 - \lambda_1 \lambda_3 \lambda_2 C1 \Big) \end{split}$$

Из анализа подынтегрального выражения критерия K_2 следует, что его минимум достигается при коэффициентах $\mu_i^*(t)$, i=1,2,3, обеспечивающих минимум подынтегральной функции $P_7(t)=P_7(\mu_1,\mu_2,\mu_3,\vec{a},t)$. Поиск минимума данной функции может быть осуществлен как с помощью методов исследования функций классического анализа, так и методами нелинейного программирования, например, методом сканирования.

5. Математические модели и алгоритм решения задачи оптимизации критерия K1

В формализованном виде задача минимизации скалярного критерия K_1 , характеризующего ущерб от нарушений качества выпускаемой продукции, имеет следующую формулировку:

(4)
$$K_1 = \int_{t_H}^{t_K} D(t, \vec{x}, \vec{x}', \vec{u}, \vec{u}') dt \rightarrow \min,$$
$$\exists D_P, \forall K_1 \in D_P : K_1 = K_{\min}.$$

Иными словами, при решении данной задачи необходимо определить такие значения вектора управляющих воздействий $\vec{u}^*(t) \in \{\vec{U}\}$, которые обеспечат попадание критерия K_1 в область его минимальных значений D_P . Наличие такой области для данной задачи подтверждается анализом причинно-следственных связей флоат-процесса и не противоречит мнению оперативно диспетчерского персонала, считающего, что оптимальное решение (4) должно быть не единственно.

Решение задачи (4) известными методами вариационного исчисления сталкивается со значительными трудностями: необходимостью разработки сложной динамической модели флоатпроцесса, учитывающей его количественные и качественные параметры; неопределенностью параметров модели на интервале $[t_n, t_k]$ ввиду дрейфа возмущений и управляющих координат объекта; сложностью решения системы нелинейных дифференциальных уравнений высокого порядка при временных ограничениях и др.

В связи с этим обстоятельством в основу алгоритма решения положено неоднократно проверенное на практике утвер-

ждение, согласно которому для решения задачи минимизации ущерба $D(t,\vec{x},\vec{x}',\vec{u},\vec{u}')$ достаточно разработать и реализовать подробный комплексный план мероприятий P по снижению брака при производстве листового стекла.

Для решения поставленной задачи был разработан план, граф которого имеет форму Лагранжева дерева и состоит из 768 вершин. Вершинами данного графа являются мероприятия плана, дуги определяют их взаимосвязь и последовательность осуществления. Фрагмент данного плана, связанный с решением проблемы уменьшения цеховой себестоимости листового стекла, приведен на рис. 4.

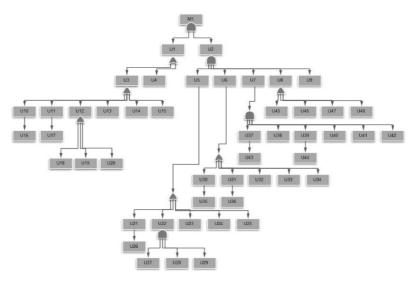


Рис. 4. Фрагмент плана мероприятий по уменьшению цеховой себестоимости стекла

Здесь М1 — уменьшение цеховой себестоимости стекла; U_1 — снижение цеховой себестоимости стекломассы; U_2 — сокращение цеховой себестоимости листового стекла; U_3 — уменьшение эксплуатационных расходов стекловаренной печи; U_4 — снижение цехового расхода сырья на участке варкивыработки; U_5 — уменьшение эксплуатационных расходов фло-

ат-ванны; U_6 – сокращение эксплуатационных расходов для печи отжига; U_7 – уменьшение затрат на резание стекла; U_8 – снижение затрат на складирование; U_9 – сокращение расхода материала на участке резки-упаковки; U_{10} – уменьшение стоимости шихты; U_{11} – сокращение стоимости стеклобоя; U_{12} – снижение стоимости топлива на технологические цели; U_{13} , U_{23} , U_{40} – уменьшение основной и дополнительной заработной платы основных производственных рабочих; U_{14} , U_{32} – оптимизация отчислений; U_{15} – снижение расходов на содержание и эксплуатаоборудования; U_{16} – сокращение расхода U_{18} – уменьшение расхода газа; U_{19} , U_{36} – снижение расхода воздуха; U_{20} – оптимизация параметров регенеративного режима, тепловой и газовой стекловаренной печи; U_{21} – снижение затрат электроэнергии на технологические цели; U_{22} – сокращение стоимости вспомогательных материалов; U_{24} – уменьшение расходов на содержание и эксплуатацию оборудования; U_{25} – оптимизация параметров газового режима формирования ленты стекла в ванне с расплавом олова; U_{26} , U_{43} – уменьшение расхода электроэнергии; U_{27} – сокращение расхода олова; U_{28} – снижение расхода защитной атмосферы; U_{29} – оптимизация расхода сернистого ангидрида; U_{30} , U_{37} – уменьшение стоимости электроэнергии на технологические цели; U_{31} , U_{39} – сокращение стоимости вспомогательных материалов; U_{33} – снижение расходов на содержание и эксплуатацию оборудования; U_{34} – оптимизация расходов на отжиг ленты стекла; U_{35} – уменьшение нормативного расхода электроэнергии; U_{41} – снижение расходов на содержание и эксплуатацию оборудования; U_{42} – снижение затрат на раскрой ленты на форматы; U_{44} – уменьшение расхода вспомогательных материалов; U_{45} – сократить стоимость возвратных отходов сократить; U_{46} – уменьшить количество складируемых материалов; U_{47} – урезать основную и дополнительную зарплату работников склада; U_{48} – снизить затраты на управление складом готовой продукции; 🔍 – символ конъюнкции, 🔔 – символ дизъюнкции).

На выполнимость каждого мероприятия плана в общем случае могут повлиять $i=1,\ldots,m$ условий, которые в общем виде записываются в виде следующих выражений:

(5) Условие f_i : ЕСЛИ ВЫПОЛНЯЕТСЯ

 \rightarrow Эдесь $B_i(x,u)$, i=1,...,g, — условия выполнения соответствующих мероприятий, $\{AND,OR,NOT,AND–NOT,OR-NOT\}$ — множество логических операций И, ИЛИ, И—НЕ, ИЛИ-НЕ, соответственно; $\{U_1,U_2,...,U_n\}$ — множество мероприятий плана.

Сделанные допущения позволяют свести процедуру решения задачи (4) в составе информационных систем предприятий стекольной промышленности к периодической проверке выполнимости плана мероприятий P при известных значениях условий f_i , $i=1,\ldots,M$, (m,M- константы). Если план в момент времени t выполним, то, следовательно, в данный момент времени удалось минимизировать ущерб от нарушений качества выпускаемой продукции, т.е. решить поставленную задачу. В противном случае необходимо установить причины, препятствующие выполнению данного плана и устранить их.

6. Модельный пример решения задачи

Задача минимизации критерия K_2 . Для упрощения расчета значений данного критерия преобразуем решение системы дифференциальных уравнений (3) к следующему виду:

$$\begin{split} P_{7}(t) &= -e^{-(\mu_{1} + \mu_{2} + \mu_{3} + \lambda_{1} + \lambda_{2} + \lambda_{3})} C8 + \frac{\lambda_{3}}{\mu_{3}} e^{-(\mu_{1} + \mu_{2} + \lambda_{1} + \lambda_{2})} C6 + \\ &+ \frac{\lambda_{2}}{\mu_{2}} e^{-(\mu_{1} + \mu_{3} + \lambda_{1} + \lambda_{3})} C7 + \frac{\lambda_{1}}{\mu_{1}} e^{-(\mu_{3} + \mu_{2} + \lambda_{3} + \lambda_{2})} C5 - \frac{\lambda_{2} \lambda_{3}}{\mu_{2} \mu_{3}} e^{-(\mu_{1} + \lambda_{1})} C3 - \\ &- \frac{\lambda_{2} \lambda_{3}}{\mu_{2} \mu_{3}} e^{-(\mu_{3} + \lambda_{3})} C2 - \frac{\lambda_{1} \lambda_{3}}{\mu_{1} \mu_{3}} e^{-(\mu_{2} + \lambda_{2})} C4 + \frac{\lambda_{1} \lambda_{2} \lambda_{3}}{\mu_{1} \mu_{2} \mu_{3}} C1. \end{split}$$

Определим значения числовых коэффициентов и переменных λ_i , μ_i , i=1,2,3, используемых при расчете величины P_7 и минимизации критерия K_2 . Исходя из опыта эксплуатации технологического оборудования, используемого при производстве листового стекла на ОАО «Саратовстройстекло», остановка процессов стекловарения, формования и отжига ленты происходит в основном из-за нарушения качества выпускаемой продукции и отказов технологического оборудования. Рассмотренные в данном примере причины остановки технологического процесса с указанием средней частоты их возникновения приведены в таблице 1.

Таблица 1. Причины остановки технологического процесса (прекращение процессов стекловарения, формования и отжига ленты)

Причина остановки техно-	Следствие	Частота воз-
логического процесса		никновения,
		час ⁻¹
В выработочном канале,	Возникновение де-	$\lambda_1 = 0.03$
подлотковых брусьях, ши-	фектов стекла	
бере и сливном лотке по-		
стоянно образуются ско-		
лы и трещины, откалыва-		
ются мелкие частицы ог-		
неупоров		
Температура олова, с пра-	Образование дефек-	$\lambda_2 = 0.01$
вого и левого борта по	тов стекла из-за	
зонам (в пяти точках) ван-	нарушения темпе-	
ны расплава фиксируется	ратурного режима	
ошибочно		
Нарушение температурно-	Брак из-за трещин	$\lambda_3 = 0,007$
го режима при отжиге	на поверхности	
стекла	стекла	

Из опыта диспетчерского персонала известно, что каждую из этих причин можно устранить тремя способами (таблица 2).

Таблица 2. Способы устранения причин, вызвавших остановку технологического процесса

Интенсивность	Мероприятия	Интенсивность	Мероприятия	Интенсивность	Мероприятия	
устранения	по устранению	восстановления	по устранению	восстановления	по устранению	
неисправности,		неисправности,		неисправности,		
μ_1 , час ⁻¹		μ_2 , час ⁻¹		μ_3 , час ⁻¹		
Первый способ						
	Проверка огне-		Настройка		Настройка	
3,33	упоров, лотка и	1,25	датчиков тем-	1,11	регулятора	
	шибера		пературы		температуры	
Второй способ						
	Ремонт		Ремонт		Ремонт	
0,09	огнеупоров,	0,62	датчиков	0,45	регулятора	
	лотка и шибера		температуры		температуры	
Третий способ						
	Замена		Замена		Замена	
0,07	огнеупоров,	0,39	датчиков тем-	0,45	регулятора	
	лотка и шибера		пературы		температуры	

Определим решение задачи $\mu_i^*(t)$, i=1,2,3, воспользовавшись значениями λ_i , μ_i , i=1,2,3, приведенными в таблицах 1 и 2. Полученные результаты представим в виде таблицы 3.

Таблица 3. Результаты решения задачи минимизации критерия K_2

$P_7^{1 cnoco\delta} = 0,00187$					
μ_{1}^{*}	$\mu^*_{\ 2}$	$\mu^*_{\ 3}$			
3,33	1,25	1,11			
$P_7^2 \stackrel{cnoco6}{=} 0,1238$					
$\mu_{ m l}$	μ_2	μ_3			
0,09	0,62	0,45			
$P_7^{3 \ cnoco6} = 0,13062$					
$\mu_{ m l}$	μ_2	μ_3			
0,07	0,39	0,45			

Таким образом, минимальное значение вероятности полной остановки процессов стекловарения, формования и отжига ленты достигается при выборе первого способа устранения причин ситуации, рассмотренной в таблице 1.

Для этого ЛПР необходимо выполнить следующие действия:

- 1. Проверить огнеупоры, лотки и шибер.
- 2. Настроить датчики температуры.
- 3. Настроить регулятор температуры.

Оптимизации критерия K_1 . Представим фрагмент плана мероприятий по уменьшению цеховой себестоимости листового стекла см. рис. 4 в виде следующей системы продукций:

ПЛАН М1 БУДЕТ ВЫПОЛНЕН, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_1 И U_2 ;

МЕРОПРИЯТИЕ U_1 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_3 ИЛИ U_4 ;

МЕРОПРИЯТИЕ U_3 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_{10} И U_{11} И U_{12} И U_{13} И U_{14} И U_{15} ;

МЕРОПРИЯТИЕ U_{10} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНО МЕРОПРИЯТИЕ U_{16} ;

МЕРОПРИЯТИЕ U_{11} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНО МЕРОПРИЯТИЕ $U_{17};$

МЕРОПРИЯТИЕ U_{12} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНЫ МЕРОПРИЯТИЯ U_{18} ИЛИ U_{19} ИЛИ U_{20} ;

МЕРОПРИЯТИЕ U_2 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_5 И U_6 И U_7 И U_8 И U_9 ;

МЕРОПРИЯТИЕ U_5 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_{21} ИЛИ U_{22} ИЛИ U_{23} ИЛИ U_{24} ИЛИ U_{25} :

МЕРОПРИЯТИЕ U_{21} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНО МЕРОПРИЯТИЕ U_{26} ;

МЕРОПРИЯТИЕ U_{22} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНЫ МЕРОПРИЯТИЯ U_{27} И U_{28} И U_{29} ;

МЕРОПРИЯТИЕ U_6 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_{30} ИЛИ U_{31} ИЛИ U_{32} ИЛИ U_{33} ИЛИ U_{34} ;

МЕРОПРИЯТИЕ U_{30} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНО МЕРОПРИЯТИЕ U_{35} ;

МЕРОПРИЯТИЕ U_{31} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНО МЕРОПРИЯТИЕ U_{36} ;

МЕРОПРИЯТИЕ U_7 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНЫ МЕРОПРИЯТИЯ U_{37} И U_{38} И U_{39} И U_{40} И U_{41} И U_{42} ;

МЕРОПРИЯТИЕ U_{37} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНО МЕРОПРИЯТИЕ U_{43} ;

МЕРОПРИЯТИЕ U_{39} БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫ-ПОЛНЕНО МЕРОПРИЯТИЕ U_{44} ;

МЕРОПРИЯТИЕ U_8 БУДЕТ ВЫПОЛНЕНО, ЕСЛИ ВЫПОЛНЕНЫ МЕРОПРИЯТИЯ U_{45} ИЛИ U_{46} ИЛИ U_{47} ИЛИ U_{48} .

В качестве условий (5), влияющих на выполнение мероприятий плана, были использованы приведенные ниже правила, сформированные оперативно-диспетчерским персоналом ОАО «Саратовстройстекло» и формализованные в виде продукции в [4]:

Условие f_1 : ЕСЛИ на поверхности стекломассы периодически появляются вторичные пузыри, ТО они приводят к дефектам стекла типа вторичная «мошка» ИЛИ к новым вторичным 212

пузырям, И выполнение мероприятия U_2 (сокращение цеховой себестоимости листового стекла) невозможно.

Условие f_2 : ЕСЛИ произошло временное повышение концентрации кислорода ИЛИ влаги в подаваемой защитной атмосфере, ТО ухудшение качества стекла И выполнение мероприятий U_4 (снижение цехового расхода сырья на участке варкивыработки), U_5 (уменьшение эксплуатационных расходов флоатванны), U_6 (сокращение эксплуатационных расходов для печи отжига), U_{12} (снижение стоимости топлива на технологические цели), U_{21} (снижение затрат электроэнергии на технологические цели) возможно.

Условие f_3 : ЕСЛИ выполнено условие f_2 И технологический процесс ведется с низким значением «восстановительного потенциала», ТО временное повышение концентрации кислорода ИЛИ влаги в подаваемой защитной атмосфере не приведет к ухудшению качества стекла И выполнение мероприятий U_4 (снижение цехового расхода сырья на участке варкивыработки), U_5 (уменьшение эксплуатационных расходов флоатванны), U_6 (сокращение эксплуатационных расходов для печи отжига), U_{12} (снижение стоимости топлива на технологические цели), U_{21} (снижение затрат электроэнергии на технологические цели) возможно.

Условие f_4 : ЕСЛИ количество олова, внедренного в нижнюю поверхность стекла соответствует толщине стекла, скорости выработки и др. факторов, ТО общие усредненные физикохимические условия процесса формования соответствуют регламентным И выполнение мероприятий U_{27} (сокращение расхода олова), U_{28} (снижение расхода защитной атмосферы), U_{29} (оптимизация расхода сернистого ангидрида) невозможно.

Условие f_5 : ЕСЛИ температура стекломассы в головной части ванны расплава не соответствует регламентным значениям, ТО температура подаваемой стекломассы из выработочного канала стекловаренной печи не соответствует регламентным значениям ($T=1100^{\circ}\text{C}\pm1^{\circ}\text{C}$) И выполнение мероприятий U_{24} (уменьшение расходов на содержание и эксплуатацию оборудования), U_{25} (оптимизация параметров газового режима формирования ленты стекла в ванне с расплавом олова), U_{26} и U_{43} (уменьшение расхода электроэнергии) невозможно.

Условие f_6 : ЕСЛИ температура в выработочном канале регистрируется правильно И выработка управляющих команд осуществляется ошибочно, ТО выдача управляющих команд с запозданием приводит к ухудшению физико-химических условий и дефектам стекла и выполнение плана М1 (уменьшение цеховой себестоимости листового стекла) невозможно.

Условие f_7 : ЕСЛИ не реже 1 раза в смену происходит несанкционированная остановка первого растягивающего устройства, ТО возникнет наличие старой стекломассы в районе первого растягивающего устройства И ухудшение физикохимических условий И возникнут дефекты стекла и выполнение плана М1 (уменьшение цеховой себестоимости стекла) невозможно.

Условие f_8 : ЕСЛИ не реже 1 раза в смену происходит несанкционированная остановка второго растягивающего устройства, ТО возникнет наличие старой стекломассы в районе второго растягивающего устройства И ухудшение физикохимических условий И возникнут дефекты стекла и выполнение плана U_2 (уменьшение цеховой себестоимости листового стекла) невозможно.

По известным правилам, используемым при проектировании цифровых ЭВМ [1, 11], системе продукций ставится в соответствие логическая функция, $F(U_1, U_2, ..., U_{45}, f_1, f_2, ..., f_8)$, где $U_1, U_2, ..., U_{45}$ — мероприятия плана, изображенного на рис. 4, а $f_1, f_2, ..., f_8$ — условия (5) их выполнения.

Логическая функция, используемая для проверки выполнимости плана мероприятий по уменьшению цеховой себестоимости листового стекла (рис. 4), для данного модельного примера имеет следующий вид:

$$F(U_{1},U_{2},...,U_{45},f_{1},f_{2},...,f_{8}) = f_{1}f_{2}f_{3}f_{6}f_{7}f_{8}U_{1}U_{5} ((f_{4}U_{27} + f_{4}U_{28} + f_{4}U_{29})U_{22} + f_{3}f_{2}f_{5}U_{21}U_{26} + U_{23} + f_{5}U_{24} + (6) + f_{5}U_{25}))U_{8}U_{9} (f_{5}U_{37}U_{43}U_{38}U_{39}U_{40}U_{41}U_{42}U_{44})^{*} \\ *(f_{2}f_{3}U_{4} + U_{3}(U_{16}U_{10} + U_{11}U_{17} + f_{2}f_{3}U_{12}(U_{18} + U_{19} + U_{20}) + U_{13} + U_{14} + U_{15})).$$

Она принимает значения:

Управление техническими системами и технологическими процессами

$$F(U_1,U_2,...,U_{45},f_1,f_2,...,f_8) = egin{cases} 1 \text{, если план выполним,} \\ 0 \text{, если план невыполним.} \end{cases}$$

Задавая различные комбинации значений аргументов этой функции и определяя соответствующие этим аргументам значения $F(U_1,\,U_2,\,...,\,U_{45},f_1,f_2,\,...,f_8)$, можно анализировать степень выполнения плана намеченных мероприятий в различных производственных ситуациях; определить не выполненные мероприятия, сдерживающие успешное осуществление разработанного плана, и получить новые сведения об условиях выполнения плана.

В частности, при невыполнении условия f_1 оптимизировать критерий K_1 невозможно, так как н а поверхности стекломассы периодически появляются вторичные пузыри, что приводит к дефектам стекла типа вторичная «мошка» и не позволяет сократить до заданного уровня цеховую себестоимость листового стекла (мероприятие U_2) и, как следствие, выполнить весь план мероприятий по уменьшению цеховой себестоимости стекла.

На рис. 5 приведена схема дискретного устройства D_{MA} , построенного по булевой функции (6) и применяемого для быстрой проверки выполнения плана, представленного на рис. 4.

Из рассмотренного выше модельного примера следует, что оперативная проверка выполнимости даже сравнительно небольшого фрагмента плана мероприятий см. рис. 4 без использования разработанной теории, безусловно, вызовет затруднения у ЛПР и потребует существенных временных затрат.

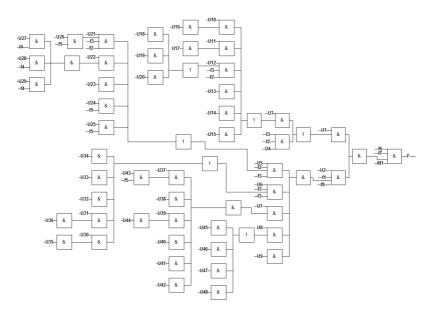


Рис. 5. Схема дискретного устройства D_{MA} , применяемого для проверки выполнения фрагмента плана мероприятий по уменьшению цеховой себестоимости стекла

7. Программное и техническое обеспечение

Для практической реализации разработанного математического обеспечения был разработан пакет программ «Информационная система для поддержки принятия решений при управлении процессом производства стекла», прошедший государственную регистрацию [9]. На рис. 6 приведена структура комплекса технических средств проблемно-ориентированной системы управления производством листового стекла предприятия ОАО «Саратовстройстекло», в составе которой предполагается осуществить внедрение разработанного математического и информационно-программного обеспечения.

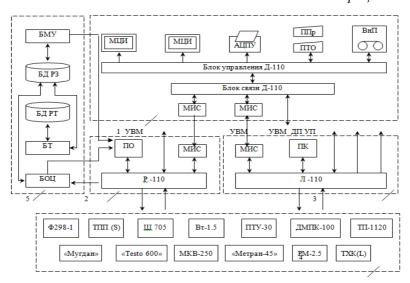


Рис. 6. Проблемно-ориентированная система управления производством листового стекла, реализованная на микропроцессорных контроллерах

Здесь 1 – «Димиконт Д-110»; 2 – «Ремиконт Р-110»; 3 – «Ломиконт Л-110»; 4 – измерительные приборы; 5 – блок интеллектуального управления; ПО – пульт оператора; ПК – пульт контроллера; МИС – модуль интерфейсной связи; МЦИ - модуль цветовой индикации; АЦПУ - алфавитноцифровое печатающее устройство; ППр - пульт программирования; ПТО – пульт технолога-оператора; ВнП – внешняя па-УВМ – управляющие вычислительные ДП – дисплей; УП – печатающее устройство; БМУ – блок минимизации ущерба от выпуска некачественной продукции; БОЦ - блок оценки вероятности возникновения аварии, приводящей к полной остановке флоат-процесса; БТ – блок тренажера; БД РТ – база данных результатов тестирования; БД РЗ – база данных решаемых задач

Данный комплекс технических средств позволяет осуществить оперативное управление процессом производства листового стекла по векторному критерию, характеризующему ущерб

от нарушений качества выпускаемой продукции и вероятность возникновения аварии, приводящей к полной остановке флоатпроцесса.

Процедура решения данной задачи представлена в виде информационно-логической схемы на рис. 7.

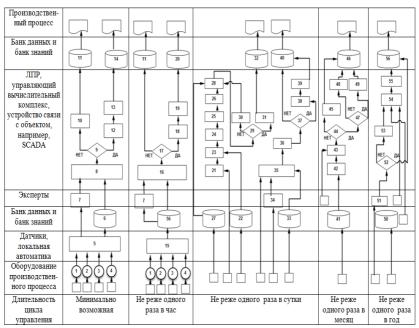


Рис. 7. Информационно – логическая схема решения задачи управления производством листового стекла

На рис. 7 сделаны следующие обозначения: 1 — процесс стекловарения; 2 — процесс формования ленты; 3 — процесс отжига ленты; 4 — процессы резки, раскройки, пакетирования стекла; 5 — сбор информации о производственных процессах, поступающей от датчиков и устройств локальной автоматики; 6 — запись информации в базу данных и базу знаний; 7 — экспертная оценка ситуации при значительном отклонении параметров производственного процесса от заданных значений; 8 — идентификация текущей ситуации, возникшей при производстве листового стекла; 9 — ситуация аварийная?; 10 — сооб-

щение о возникновении штатной производственной ситуации, требующей вмешательства диспетчера; 11 – занесение информации о штатной производственной ситуации в журнал сменного диспетчера на электронном носителе; 12 – сообщение о возникновении аварийной производственной ситуации; 13- принятие решения по устранению аварийной ситуации; 14 – занесение информации об аварийной производственной ситуации и принятых мерах по ее ликвидации в журнал сменного диспетчера на электронном носителе; 15 – сбор информации об отказах производственного оборудования; 16 - анализ состояния производственного оборудования; 17 - произошел отказ производственного оборудования, учитываемого в математической модели? 18 - сообщение ЛПР об отказе оборудования; 19 - коррекция коэффициентов λ_i , μ_i , i = 1, 2, 3; 20 — занесение в базу данных измененных коэффициентов λ_i , μ_i , i = 1, 2, 3; 21 –постановка на решение задачи минимизации вероятности возникновения аварии, приводящей к полной остановке флоат-процесса; 22 - вызов из базы данных текущих значений коэффициентов λ_i , μ_i , i = 1, 2, 3; 23 — идентификация параметров математической модели задачи минимизации критерия K_2 ; 24 — решение системы дифференциальных уравнений (3); 25 - минимизация целевой функции (2); 26 - определение оптимальных значений коэффициентов восстановления отказавшего оборудования $\mu_i^*(t)$, i = 1, 2, 3; 27 — вызов из базы данных сведений о мероприятиях по ремонту оборудования; 28 – формирование перечня мероприятий, позволяющих осуществить ремонт отказавшего оборудования с интенсивностью $\mu_i^*(t)$, i = 1, 2, 3; 29 — перечень ремонтных мероприятий одобрен ЛПР?; 30 –внесение изменений в разработанный список мероприятий; 31 – выдача рекомендаций по реализации перечня мероприятий; 32 – занесение информации о реализованных мероприятиях в базу данных; 33 – поиск информации в базе данных о происшедших нарушениях качества выпускаемой продукции; 34 - сбор экспертной информации о нарушениях качества выпускаемой продукции; 35 - формирование плана мероприятий, используемого при минимизации ущерба от нарушений качества выпускаемой продукции, например, средствами корпоративной системы управления про-

ектами TimeBridge или при помощи программного продукта [9]; 36 — формирование логической функции $F(u_1, u_2, ..., u_{48},$ $f_1, f_2, ..., f_{89}$), используемой при проверке выполнимости плана мероприятий; проверка 37 условия $F(u_1, u_2, ..., u_{48},$ $f_1, f_2, ..., f_{89}$), = 1, т.е. план выполнен?; 38 – поиск по графу (рис. 4) неисполнения причин мероприятий; плана 39 - выдача рекомендаций по устранению причин невыполнения плана; 40 – занесение информации о результатах решения задачи минимизации ущерба от нарушений качества выпускаемой продукции в базу данных; 41 - сбор информации о рекомендациях, выданных и реализованных в процессе решения задачи за месяц; 42 – составление списка нереализованных рекомендаций; 43 – анализ списка нереализованных рекомендаций; 44 – работа программного комплекса эффективна?; 45 – коррекция параметров математической модели $\lambda_i, \ \mu_i, \ i=1,2,3$ и/или плана мероприятий, используемого при минимизации ущерба от нарушений качества выпускаемой продукции; 46 – занесение изменений в базу данных; 47 – работа диспетчерского персонала эффективна?; 48 – премирование; 49 – анализ причин неэффективного использования разработанного математического обеспечения; 50 – накопление информации об управляющих воздействиях, реализованных в течение года; 51 – экспертная оценка величины экономического эффекта от реализации управляющих воздействий; 52 – уровень ожидаемого экономического эффекта от решения задачи достигнут или превышен? 53 – анализ причин; 54 – коррекция плана мероприятий, направленных минимизацию ущерба от нарушений качества выпускаемой продукции; 55 – утверждение скорректированного плана ЛПР; 56 – занесение информации в базу данных.

Из рис. 7 следует, что задача управления производством листового стекла решается на временных интервалах различной длины: минимально возможном, 1 час, 1 сутки, 1 месяц и 1 год.

На первом из этих интервалов осуществляется сбор информации о процессе производства листового стекла и идентификация текущей производственной ситуации. При возникновении аварийной ситуации или ситуации, требующей немедленного вмешательства управленческого персонала, соответствующая

информация доводится до сведения ЛПР и заносится в журнал сменного диспетчера на электронном носителе.

На временном интервале не реже одного раза в 1 час выполняются анализ состояния производственного оборудования и сбор информации об его отказах, определяются и заносятся в базу данных АСУ ТП значения коэффициентов λ_i , μ_i , i=1,2,3.

На временном интервале не реже одного раза в 1 сутки решается задача управления флоат-процессом по векторному критерию, характеризующему ущерб от выпуска некачественной продукции и вероятность возникновения аварии, приводящей к полной остановке производства. Выданные ЛПР рекомендации, а также реализованные управляющие воздействия заносятся в базу данных АСУ производством листового стекла.

На временном интервале не реже одного раза в 1 месяц проводится анализ информации о рекомендациях, выданных и реализованных в процессе решения задачи за месяц, составляется список нереализованных рекомендаций и на его основе оценивается эффективность функционирования программного комплекса. При необходимости выполняется коррекция параметров математической модели λ_i , μ_i , i=1,2,3, и плана мероприятий, используемого при минимизации ущерба от нарушений качества выпускаемой продукции. В зависимости от достигнутых результатов осуществляется премирование диспетчерского персонала или анализируются причины неэффективного использования разработанного математического обеспечения.

На временном интервале не реже одного раза в 1 год на основе анализа накопленной информации об управляющих воздействиях, реализованных в течение года, осуществляется экспертная оценка величины экономического эффекта от решения задачи. При не достижении ожидаемого уровня экономического эффекта выполняется коррекция плана мероприятий, направленных минимизацию ущерба от нарушений качества выпускаемой продукции, а также параметров используемой математической модели.

8. Заключение

В настоящее время разработанное математическое обеспечение проходит внедрение в структурных подразделениях ОАО «Саратовстройстекло». Его эксплуатация в тестовом режиме в качестве информационно-советующей системы повысило оперативность и качество управленческих решений, принимаемых оперативно-диспетчерским персоналом предприятия к действиям в сложных производственных ситуациях, периодически возникающих при производстве листового стекла.

Литература

- 1. БОЙКО В.И., ГУРЖИЙ А.Н., ЖУЙКОВ А.А, ЗОРИ А.А. и др. *Схемотехника электронных систем*. *Цифровые устройства*. СПб.: БХВ Петербург, 2004. 512 с.
- 2. ВАСИЛЬЕВ С.Н. *От классических задач регулирования к интеллектуальному управлению. I* // Известия Академии наук. Теория и системы управления. 2001. №1. С. 5–22.
- 3. ВАСИЛЬЕВ С.Н. *От классических задач регулирования к интеллектуальному управлению. II* // Известия Академии наук. Теория и системы управления. 2001. №2. С. 5–21.
- 4. .ДОМНИЧ В.С, ИВАЩЕНКО В.А., ПЕТРОВ Д.Ю. *Автоматизация поиска причин аварийных ситуаций при формовании листового стекла* // Проблемы управления. 2011. № 5. С. 52–58.
- 5. КУШНИКОВ В.А., РЕЗЧИКОВ А.Ф., ФОМИНЫХ Д.С., САНЬКОВА А.Б. *Модели и алгоритмы системы оперативного управления процессом формования листового стекла* // Автоматизация и современные технологии. 2007. №12. С. 16–24.
- 6. КУШНИКОВ В.А., РЕЗЧИКОВ А.Ф., ЦВИРКУН А.Д. Управление в человеко-машинных системах с автоматизированной процедурой коррекции целей // Автоматика и телемеханика. — 1998. — №7. — С. 168—175.
- 7. МАКАРОВ Р.И., ХОРОШЕВА Е.Р., ЛУКАШИН С.А. *Автоматизация производства листового стекла* М.: Изд-во ACB, 2002. 192 с.

- 8. РЕЗЧИКОВ А.Ф., ШРАЙ Ю.К., КУШНИКОВ В.А., ДО-НИН С.Г. Оперативная идентификация и управление режимами эксплуатации энергосистем предприятия // Приборы и системы управления. — 1994. — №5. — С. 12–15.
- 9. Свидетельство о государственной регистрации программы для ЭВМ: Информационная система для поддержки принятия решений при управлении процессом производства стекла / ЩЕРБАКОВ М.А., КУШНИКОВ В.А. № гос. рег. 2011619165, дата регистрации 25.11.2011.
- 10. ЦВИРКУН А.Д. Основы синтеза структуры сложных систем. М.: Наука, 1982. 200 с.
- 11. ШАПОРЕВ С.Д. Математическая логика. Курс лекций и практических занятий. СПб.: БХВ Петербург, 2005. 416 с.
- 12. ШЛЫЧКОВ Е.И., КУШНИКОВ В.А., РЕЗЧИКОВ А.Ф., БОЙКОВА О.М. *Противоаварийный тренажер для подготовки операторов формования листового стекла* // Вестник Саратовского государственного технического университета. 2006. №4(18), Выпуск 3. С. 125–131.
- 13. ШЛЫЧКОВ Е.И., ФОМИНЫХ Д.С., КУШНИКОВ В.А., РЕЗЧИКОВ А.Ф. Автоматизированная система ситуационного управления процессом формования листового стекла // Автоматизация и современные технологии. 2006. №8. С. 3—11.
- 14. ЩЕРБАКОВ М.А., КУШНИКОВ В.А. Модели и алгоритмы системы управления аварийными ситуациями при производстве стекла // Вестник СГТУ. 2011. №2(55). Выпуск 1. С. 196—199.

PROCESS CONTROL SYSTEM FOR FLOAT GLASS PRODUCTION: PROBLEMS, MODELS, AND ALGORITHMS

Vadim Kushnikov, Institute of Precision Mechanics and Control of RAS, Saratov, Doctor of Science, professor (kushnikoff@yandex.ru) **Maxim Shcherbakov**, Yuri Gagarin State Technical University of Saratov, graduate student (max-yta@mail.ru)

Abstract: We discuss problems, models, algorithms, and software to design rational control for flat glass production process. The rational control must optimize a vector criterion which characterizes damage caused by product quality corruption and the probability of an accident leading to the complete shutdown of the float process.

Keywords: float process, production quality, vector criterion, mathematical models, algorithms, software.

Статья представлена к публикации членом редакционной коллегии Н.Н. Бахтадзе

Поступила в редакцию 16.10.2013. Опубликована 31.03.2014.