УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ
на главную написать письмо карта сайта

Алгоритмическая устойчивость и сложность процесса неявной адаптации сеточной модели нестационарной теплопроводности к нагреваемому веществу


Название статьи:  Алгоритмическая устойчивость и сложность процесса неявной адаптации сеточной модели нестационарной теплопроводности к нагреваемому веществу
Выпуск: 101
Год: 2023
Библиография: Жуков П.И., Фомин А.В., Глущенко А.И. Алгоритмическая устойчивость и сложность процесса неявной адаптации сеточной модели нестационарной теплопроводности к нагреваемому веществу // Управление большими системами. Выпуск 101. М.: ИПУ РАН, 2023. С.39-63. DOI: https://doi.org/10.25728/ubs.2023.101.3
Дата опубликования: 31.01.2023
Ключевые слова: сеточная модель, нестационарная теплопроводность, адаптация, градиентный метод, алгоритмическая сложность, вычислительная устойчивость
Аннотация: Рассматривается процесс адаптации численной модели нестационарной теплопроводности, реализованной при помощи методов конечных разностей. Для классического представления данных моделей в большинстве приложений и задач уже доказана алгоритмическая устойчивость, но в данном случае рассматривается задача, связанная с параметрической адаптацией уравнения нестационарной теплопроводности к нагреваемому веществу, выполненной при помощи решения смежной вариационной задачи. Основа данного подхода предполагает замену теплофизических параметров рассматриваемого уравнения на свободно настраиваемые параметры и их коррекцию («обучение модели») методом стохастического градиента. Чтобы избежать попадания в области неустойчивости при «обучении», необходимы ограничения на введенные настраиваемые параметры. В данной работе такие ограничения получены на основании доказанных условий устойчивости классической конечно-разностной модели нестационарной теплопроводности. В результате численного эксперимента было установлено, что предлагаемые ограничения позволяют в среднем увеличить количество устойчивых начальных условий на 14%, увеличить количество попаданий в устойчивые траектории на 61%. Также было проведено аналитическое сравнение порядков роста алгоритмической сложности классической и модифицированной модели. В результате расчетов было установлено, что обе модели имеют порядок роста О(n4), что было подтверждено численным экспериментом.


Author(s): Zhukov P., Fomin A., Glushchenko A.
Article title: Algorithmic stability and complexity of implicit adaptation of nonstationary thermal conductivity mesh model to heated substance
Issue: 101
Year: 2023
Keywords: mesh model, nonstationary thermal conductivity, adaptation, gradient descent method, algorithmic complexity, computational stability
Abstract: This paper deals with the process of adaptation of a numerical model of nonstationary thermal conductivity implemented with the help of finite difference methods. The algorithmic stability has already been proved for the classical representation of these models in most applications and problems, but in this case we consider a problem related to the parametric adaptation of the equation of nonstationary heat conduction to the heated substance implemented by solving of the related variational problem. The basis of this approach implies replacement of thermophysical parameters of the equation in question by freely adjustable parameters and their adaptation ("model training") by a stochastic gradient method. Optimization of algorithmic equations that do not have an analytical form is associated with unstable initial conditions and "training" trajectories. To avoid falling into these regions we need to impose restrictions on the adjustable parameters. In this paper, such constraints are derived on the basis of proven stability conditions for the classical finite-difference model of non-stationary thermal conductivity. As a result of the numerical experiments, it is shown that the proposed constraints allow one to increase, on average, the number of stable initial conditions by 13%, as well as the number of experiments when stable trajectories are achieved - by 61%. In addition to this result, an analytical comparison of the growth orders of algorithmic complexity of the classical model and the modified one is also made. As a result of the calculations, it is found that both models have a growth order of O(n4), which is confirmed by numerical experiments.


В формате PDF

Просмотров: 422; загрузок: 83, за месяц: 11.

Назад

ИПУ РАН © 2007. Все права защищены