УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ
на главную написать письмо карта сайта

Интернет конференция по проблемам теории и практики управления

На этом форуме обсуждаются научные публикации, связанные с применением математических моделей в управлении сложными (большими) системами. Для размещения новой публикации воспользуйтесь ссылкой "Подать статью" сверху. С помощью той же ссылки подаются статьи для публикации в Сборнике "Управление большими системами". Все подаваемые в Сборник статьи автоматически публикуются в этой Интернет-конференции, но можно подать статью в Конференции, не подавая ее в Сборник.

Появление статьи в Интернет-конференции не говорит о том, что она опубликована или будет опубликована в Сборнике "Управление большими системами". Статьи в Интернет-конференции публикуются в первоначальной авторской редакции. Изменения, вносимые в статью редколлегией Сборника в процессе ее рассмотрения, не отображаются автоматически в Интернет-конференции. Авторы статей могут внести соответствующие изменения вручную, разместив ответ на сообщение со своей статьей в Интернет-конференции.

Поиск  Пользователи  Правила 
Закрыть
Логин:
Пароль:
Забыли свой пароль?
Регистрация
Войти  
Выбрать дату в календаре ...  Выбрать дату в календаре

Страницы: 1
Аппроксимации матричной $l_0$-квазинормы при синтезе разреженных регуляторов: численные исследования эффективности, Рассмотрены различные способы аппроксимации числа ненулевых строк матрицы для получения разреженных регуляторов в задачах оптимального управления линейными системами. Наряду с популярным подходом, основанным на использовании матричной $l_1$-нормы, применя
Название: Аппроксимации матричной $l_0$-квазинормы при синтезе разреженных регуляторов: численные исследования эффективности
Автор: Алексей Быков
Соавторы:
Быков Алексей Витальевич, Щербаков Павел Сергеевич
Аннотация:
Рассмотрены различные способы аппроксимации числа ненулевых строк матрицы для получения разреженных регуляторов в задачах оптимального управления линейными системами. Наряду с популярным подходом, основанным на использовании матричной $l_1$-нормы, применяются более сложные невыпуклые приближения, минимизация которых требует специальных вычислительных процедур. Сравнение эффективности разных аппроксимаций происходит в рамках численного моделирования.
Ключевые слова:
разреженные регуляторы, $l_1$-оптимизация, линейные системы, оптимальное управление, линейные матричные неравенства
Страницы: 1

ИПУ РАН © 2007. Все права защищены