Автор: Konstantin Vytovtov
Соавторы:
Диане С. А.К., Барабанова Е.А.
Аннотация:
Статья посвящена разработке алгоритмов анализа загрязнений на поверхности водоемов по визуальной информации, полученной с использованием мультиспектральной камеры, закрепленной на корпусе БПЛА. Предложена структура алгоритмического комплекса для анализа мультиспектральных аэрофотоснимков. В рамках развиваемого подхода каждое из анализируемых изображений проходит процедуру предобработки, обеспечивающую выравнивание и совмещение его спектральных каналов в единый многомерный растр. Разработанный аналитический алгоритм позволяет осуществлять обработку и свертку каналов мультиспектрального изображения с применением трех математических операторов – полосной фильтрации, изменения контраста и изменения яркости. При этом выбор параметров для выделения загрязнений на поверхности водоемов основан на предварительном этапе, связанном с максимизацией показателя превышения контраста для эталонной области. Предложенный нейросетевой алгоритм анализа загрязнений основывается на применении метода скользящего окна в сочетании со сверточной архитектурой нейросетевого классификатора для анализа фрагментов изображения, расположенных по прямоугольной сетке. Программная реализация данных алгоритмов, а также разработка графического интерфейса пользователя, позволили подтвердить предположение об эффективности каждого из рассмотренных подходов. Экспериментальные исследования показали, что нейросетевой алгоритм выигрывает в точности, а аналитический подход легче поддается интерпретации с точки зрения эксперта.
Ключевые слова:
аэрофотоснимок, аналитический метод, нейросетевой подход.